Publication 20–02

KTH Railway Group

Status Report
2020
KTH Railway Group
Kungliga Tekniska Högskolan
S-100 44 Stockholm
Sweden
e-mail: stichel@kth.se

Production
Thomas Johansson
TJ Kommunikation
e-mail: tjkomm@bahnhof.se

Cover photo: Christian Kruse

More information on the web-site for KTH Railway Group at www.railwaygroup.kth.se
<table>
<thead>
<tr>
<th>RV</th>
<th>RAIL VEHICLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running gear for freight wagons</td>
<td>RV 1</td>
</tr>
<tr>
<td>Simulation of wheel-on-rail deterioration phenomena</td>
<td>RV 2</td>
</tr>
<tr>
<td>Modelling of rail vehicles dynamics</td>
<td>RV 3</td>
</tr>
<tr>
<td>Track stiffness, irregularities and maintenance</td>
<td>RV 4</td>
</tr>
<tr>
<td>Dynamic instability and discomfort of high-speed trains due to aerodynamics in tunnels</td>
<td>RV 5</td>
</tr>
<tr>
<td>Robust safety systems of trains</td>
<td>RV 6</td>
</tr>
<tr>
<td>Simulation of energy consumption and running time of trains</td>
<td>RV 7</td>
</tr>
<tr>
<td>Train formation management and monitoring (TIMM)</td>
<td>RV 8</td>
</tr>
<tr>
<td>Crosswind stability and unsteady aerodynamics in vehicle design</td>
<td>RV 9</td>
</tr>
<tr>
<td>Gröna Tåget – Programme Management</td>
<td>RV 10</td>
</tr>
<tr>
<td>Gröna Tåget – Track-friendly bogies</td>
<td>RV 11</td>
</tr>
<tr>
<td>Gröna Tåget – High-speed vehicles with carbody tilt</td>
<td>RV 12</td>
</tr>
<tr>
<td>Gröna Tåget – Sound quality of external railway noise</td>
<td>RV 13</td>
</tr>
<tr>
<td>Gröna Tåget – Energy consumption</td>
<td>RV 14</td>
</tr>
<tr>
<td>Gröna Tåget – Active lateral suspension</td>
<td>RV 15</td>
</tr>
<tr>
<td>Gröna Tåget – Overhead power systems for operation of high-speed trains in Sweden</td>
<td>RV 16</td>
</tr>
<tr>
<td>Collaboration in research and development of new curriculum in sound and vibration (CIRCIS)</td>
<td>RV 17</td>
</tr>
<tr>
<td>Railway vehicle dynamics and track interactions: Total regulatory acceptance for the interoperable network (DynoTRAIN)</td>
<td>RV 18</td>
</tr>
<tr>
<td>Towards an affordable, resilient, innovative and high-capacity European Railway System för 2030/2050 (Capacity4Rail)</td>
<td>RV 19</td>
</tr>
<tr>
<td>Technology opportunities and strategies toward climate-friendly transport (TOSCA)</td>
<td>RV 20</td>
</tr>
<tr>
<td>Lightweight carbody for high-speed trains</td>
<td>RV 21</td>
</tr>
<tr>
<td>Wheel profile for freight wagons in Sweden</td>
<td>RV 22</td>
</tr>
<tr>
<td>Make Rail The Hope for protecting Nature (MARATHON)</td>
<td>RV 23</td>
</tr>
<tr>
<td>The sustainable freight railway (SUSTRAIL)</td>
<td>RV 24</td>
</tr>
<tr>
<td>IMPACT -1 and IMPACT -2</td>
<td>RV 25</td>
</tr>
<tr>
<td>Future Improvement for Noise and Energy (FINE-1 and FINE-2)</td>
<td>RV 26</td>
</tr>
<tr>
<td>Real time information applications and energy efficient solutions for rail freight (FR8HUB)</td>
<td>RV 27</td>
</tr>
<tr>
<td>Onboard condition monitoring of vehicle-track dynamic interaction</td>
<td>RV 28</td>
</tr>
<tr>
<td>Innovative technical solutions for improved train DYNAMics and operation of longer FREIGHT Trains (DYNAFREIGHT)</td>
<td>RV 29</td>
</tr>
<tr>
<td>Innovative RUNning gear soluTIons for new dependable, sustainable, intelligent and comfortable RAIL vehicles (RUN2RAIL)</td>
<td>RV 30</td>
</tr>
<tr>
<td>Performance Improvement for Vehicles On Track (PIVOT-I and PIVOT-2)</td>
<td>RV 31</td>
</tr>
<tr>
<td>Performance Improvement for Vehicles On Track (PIVOT-I and PIVOT-2)</td>
<td>RV 32</td>
</tr>
<tr>
<td>IMPACT -1 and IMPACT -2</td>
<td>RV 33</td>
</tr>
<tr>
<td>Future Improvement for Noise and Energy (FINE-1 and FINE-2)</td>
<td>RV 34</td>
</tr>
<tr>
<td>Real time information applications and energy efficient solutions for rail freight (FR8HUB)</td>
<td>RV 35</td>
</tr>
<tr>
<td>GREY BOXES INDICATE TERMINATED PROJECTS</td>
<td></td>
</tr>
<tr>
<td>ME</td>
<td>TPL</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Machine Elements (Dept of Machine Design)</td>
<td>TRANSPORT PLANNING</td>
</tr>
<tr>
<td>Track-vehicle interaction (SAMBA 6) – Wheel rail wear mechanisms and transitions</td>
<td>Regional intermodal transport systems – Analysis and case study</td>
</tr>
<tr>
<td>Adhesion between railway wheel and rail</td>
<td>Capacity4Rail (C4R)</td>
</tr>
<tr>
<td>Airborne particles generated from train-track interaction</td>
<td>Sustainable and energy efficient regional logistics in the Greater Stockholm area</td>
</tr>
<tr>
<td>Block brakes during winter conditions</td>
<td>City logistics with pilot study of Tomteboda yard</td>
</tr>
<tr>
<td>Quiet track</td>
<td>ARCC WP2: Real-time yard management</td>
</tr>
<tr>
<td>Models for rail traffic emission factors</td>
<td>FR8HUB WP3: Real-time network management and simulation of increasing speed for freight trains</td>
</tr>
<tr>
<td></td>
<td>FR8HUB WP4: Intelligent video gate</td>
</tr>
<tr>
<td></td>
<td>FR8RAIL II WP3: Real-time network management and improved methods for timetable planning</td>
</tr>
<tr>
<td></td>
<td>Freight Automation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey boxes indicate terminated projects</td>
<td></td>
</tr>
</tbody>
</table>
The Railway Group was formed in 1988 as an informal organization to support and coordinate expertise in the area of railway technology at KTH. Since 1996, the Railway Group is a formal research and development centre in railway technology at KTH. The main tasks are research, higher education at graduate and postgraduate level, and training for employees in the railway field. The funding is regulated by an agreement between KTH, the Swedish Transport Administration (Trafikverket), Bombardier Transportation, Region Stockholm (formerly SLL), SJ AB and the consultant companies Atkins (formerly SNC-Lavalin) and SWECO.

KTH Railway Group is a multidisciplinary research centre with a holistic approach. It consists of ten research groups, each of them representing one or more disciplines which together, in principle, cover all competencies in the railway area. This unique organization is able to carry out major research programmes with a broad approach in collaboration with our partners, covering not only technical aspects but also commercial ones, e.g. market analysis. Throughout the years, KTH Railway Group has improved railway systems and carried out high-impact concept studies, like for example Gröna Tåget. All these projects aim at increasing the efficiency and the competitiveness of the railway transport compared to other means of transport. By the very close contact to our external partners our research in many cases does not only lead to scientific publications but is directly implemented in new vehicle designs, infrastructure upgrades or train operating strategies.

The Railway Group is very international. We are involved in about ten Shift2Rail projects where we work together with basically all European stakeholders as vehicle suppliers, infrastructure managers, train operators, universities and consulting companies. The amount of scientific exchange with partner universities in Europe, USA, China, Australia, India, Thailand and Indonesia is continuously increasing.

The KTH Railway Group is also very active in railway education and training. We teach railway students in mechanical, civil and electrical engineering. We offer a two-year master programme in Vehicle Engineering (Road and Rail). In the autumn of 2018 a new master programme in Railway Engineering in cooperation with the University of Illinois at Urbana-Champaign (UIUC) was inaugurated. Students enrolled at KTH spend one semester at UIUC and vice versa. The Railway Group is regularly arranging training courses for engineers in industry and train operators/infrastructure managers.

Research on and investments in railways are more important than ever. The effects of climate change become more and more visible. Rail transport is and will remain the most environmentally friendly means of transport. The European Commission has proposed designating 2021 as the European Year of Rail. We are helping Trafikverket with investigations into offering better night train services from Sweden to e.g. Berlin, Brussels or Paris. Our university urges us all to reduce CO2 emissions from our business travels. The terrible Corona pandemic hopefully can lead to a more powerful rethinking of transport, which, however, will put high demands on future railway systems. Let us all together take on the challenge. This report hopefully can inspire you with the variety of activities that are described. If you have any questions, do not hesitate to contact me or any other member of the KTH Railway Group.

September 2020

Professor Sebastian Stichel
Director

KTH Railway Group in 2020
The KTH Railway Group is organized as an independent unit within the School of Engineering Sciences. The board of the Railway Group consists of representatives from companies or organizations that have signed the general agreement.

Christoffer Löfving (Chairman)
Swedish Transport Administration (Trafikverket)
christoffer.lofving@trafikverket.se

Magnus Forsén
Bombardier Transportation Sweden AB
magnus.forsen@rail.bombardier.com

Emma Selén
Region Stockholm (formerly SLL)
emma.unosson-selen@sil.se

Susanne Rymell
SJ AB
susanne.rymell@sj.se

Pia Lagerlöf
Atkins (formerly SNC-Lavalin)
pia.lagerlof@atkinsglobal.com

Håkan Andersson
SWECO
hakan.andersson@sweco.se

Mats Jonsson
Bombardier Transportation Sweden AB
mats.p.jonsson@rail.bombardier.com

Mats Berg
KTH - Rail Vehicles
mabe@kth.se

Anders Lindahl
KTH – Transport Planning
anders.lindahl@abe.kth.se

Raid Karoumi
KTH - Structural Engineering and Bridges
raiddk@kth.se

Adjunct to the board
Tohmmy Bustad
Swedish Transport Administration (Trafikverket),
tohmmy.bustad@trafikverket.se

Stefan Östlund
KTH - Electrical Energy Conversion
stefano@kth.se

Björn Westerberg
Tågföretagen
bjorn.westerberg@tagforetagen.se

Henrik Tengstrand
Järnvägsklustret
h.tengstrand@gmail.com

Roger Lundén
Chalmers University of Technology
roger.lunden@chalmers.se

Uday Kumar
Luleå University of Technology
uday.kumar@ltu.se

Director
Sebastian Stichel
KTH - Rail Vehicles
stichel@kth.se

Henrik Tengstrand, Mats Berg, Roger Lundén, Mats Jonsson, Sebastian Stichel, Anders Lindahl, Raid Karoumi, Emma Selén, Kristina Frölander, Christoffer Löfving,

Not present on photo: Susanne Rymell, Magnus Forsén, Pia Lagerlöf, Håkan Andersson, Tohmmy Bustad, Stefan Östlund, Björn Westerberg, Uday Kumar
Research groups 2020

SCHOOL OF ENGINEERING SCIENCES
Rail Vehicles – Professor Mats Berg
The Marcus Wallenberg Laboratory for Sound and Vibration Research – PhD Ulf Carlsson
Lightweight Structures – Associate Professor Per Wennhage

SCHOOL OF ARCHITECTURE AND THE BUILT ENVIRONMENT
Transport Planning – Associate Professor Oskar Fröidh
Structural Engineering and Bridges – Professor Raid Karoumi
Soil and Rock Mechanics – PhD Carl Wersäll

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT
Systems and Component Design – Professor Ulf Olofsson

SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
Electric Power and Energy Systems – Professor Stefan Östlund
Information Science and Engineering – Professor Mats Bengtsson
Network and Systems Engineering – Professor György Dán

The Board members 2020

Not present on photo: Magnus Forsén, Pia Lagerlöf, Håkan Andersson, Björn Westerberg, Uday Kumar
Railway Education at KTH Railway Group

Four of the KTH Railway Group’s research groups are involved in railway related educational programmes and courses, i.e. Rail Vehicles, Transport Planning, Structural Engineering and Bridges, and Electrical Power Engineering. These contribute to many different educational programmes, with a strong specialization at Master level in the form of four subsystem-specialised programmes (Vehicle Engineering, Civil and Architectural Engineering, Transport and Geoinformation Technology, Electric Power Engineering) and one transversal system-perspective programme (Railway Engineering).

Key importance of Education in Railway Systems
Railway Education is of strategic importance for the society as it creates a dynamic workforce in a sector that is intrinsically working towards the UN Sustainable Development Goals. The effort of KTH Railway Group towards this societal challenge has led to the start of the new master programme in Railway Engineering in 2018, in collaboration with RailTEC at the University of Illinois in Urbana Champaign (UIUC). Together, the two universities provide leading expertise in Railway Systems research and education.

The programme offers a unique railway systems education where graduates are prepared for working in a global industry, administrations and research institutions active in Railways with a broad systems perspective.

A complete and organic education
The courses in the Railway Group are carried out in a variety of formats and levels, offering a unique overall perspective of the different specialization areas and their mutual interaction and influence. Bachelor, Master, and PhD programmes in different subjects can take advantage of the multidisciplinarity integral to the KTH Railway Group for creating highly dynamic courses with up to date content and easy access to adjacent disciplinary areas.

Seamless coupling to the professional life
The Railway Group actively works towards maintaining a strong coupling with the different companies, public authorities and research centres that work in the Railway Sector. In the undergraduate and graduate courses there are many opportunities to interact with partners in the form of study visits or invited industry lectures, but the strongest coupling happens when carrying out a Bachelor or Master Thesis.

The continuous work towards a highly skilled workforce also happens in the form of training for company development. These personalised courses are given on request from companies by each of the research groups, tailored for the actual needs of the specific company.

Railway Programmes in 2020-2021

There are a number of 5-year programmes (Civilingenjörsutbildning) leading to education in railways. From those, a student can take the following Specializations/Master Programmes:

<table>
<thead>
<tr>
<th>Rail Vehicles</th>
<th>Structural Engineering and Bridges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carlos Casanueva</td>
<td>https://www.kth.se/profile/carlosc</td>
</tr>
<tr>
<td>Anders Lindahl</td>
<td>https://www.kth.se/profile/lindahl</td>
</tr>
</tbody>
</table>

Rail Vehicles

- 2-year MSc Vehicle Engineering
- 2-year MSc Railway Engineering

Structural Engineering and Bridges

- 2-year MSc Civil and Architectural Engineering
- 2-year MSc Transport and Geoinformation Technology
- 2-year MSc Railway Engineering

Electrical Machines & Power Electronics

- 2-year MSc Electric Power Engineering

Railway Courses in 2020-2021

Division of Rail Vehicles

- SD2221 Vehicle System Technology (8 hp)
- SD2307 Rail Vehicle Technology (7,5 hp)
- SD2313 Rail Vehicle Dynamics (8 hp)

<table>
<thead>
<tr>
<th>Railway Traffic Planning Group at division of Transport Planning, Economics and Engineering</th>
<th>Railway Signalling System - Project Planning (7,5 hp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH1025 Kollektivtrafiksystem, bussar och spårväg, gk (7,5 hp)</td>
<td>AH2031 Railway Signalling System - Project Planning (7,5 hp)</td>
</tr>
<tr>
<td>AH2026 Railway Traffic - Market and Planning, Basic Course (7,5 hp)</td>
<td>AH2031 Railway Signalling System - Project Planning (7,5 hp)</td>
</tr>
<tr>
<td>AH2028 Railway Traffic - Market and Planning, Advanced Course (7,5 hp)</td>
<td>AH2031 Railway Signalling System - Project Planning (7,5 hp)</td>
</tr>
<tr>
<td>AH2029 Railway Signalling System, Basic Course (7,5 hp)</td>
<td>AH2031 Railway Signalling System - Project Planning (7,5 hp)</td>
</tr>
</tbody>
</table>

Division for Road and Rail Engineering

- AF2001 Road- and Railway Track Engineering (7,5 hp)
- AH1908 Anläggning 2. Byggnad och underhåll av vägar och järnvägar (7,5 hp)

Division for Structural Engineering and Bridges

- AF2011 Structural Dynamics for Civil Engineers (7,5 hp)
- AF2021 Bridge Design (7,5 hp)
- AF2023 Bridge Design, Advanced Course (7,5 hp)

Division for Electric Power Engineering

- EF1400 Electric Traction (6 hp)
In the springs of 2016, 2018 and 2019 the KTH Railway Group gave an overview rail system course for persons working in the rail business. On average there were about 60 participants at these seven-day courses. A course was also planned for the spring of 2020, but was postponed by one year.

KTH Railway Group has also contributed to the annual training courses of Nordisk Banteknisk Ingenjörsutbildning (NBIU) och Nordisk Elektroteknisk Ingenjörsutbildning (NEIU).

Special events and achievements

Railway Group Spring seminars
How can digitalisation and automation make railways more efficient? Oct 2020
The European railway system of 2050: What is needed and how can Shift2Rail contribute? 2019
Effektiva tägssystem för godstransporter 2.0. Strategier, forsknings- och innovationsbehov när digitalisering och automatisering av transporterna skapar nya möjligheter. 2018
Framtidens infrastruktur och transporter – utmaningar och möjligheter i den nya nationella transportplanen för 2018–2029. 2017
Höghastighetsbanor i Sverige – Utmaningar och möjligheter. 2016
Järnvägens organisation – ett lyft för järnvägen. 2015

Keynote presentations on conferences
International Seminar of Railroad Bridge & Track Interaction, Seoul 2019. Recent research in railway bridge dynamics. R. Karoumi
1st International Conference on Rail Transportation, Chengdu 2017. Integrated wheel and rail damage prediction using vehicle-track dynamic simulations. M. Berg, C. Casanueva, R. Enhblom, S. Stichel

General and best paper awards
Research on intelligent compaction by Carl Wersäll – IVA’s 100 list 2020 (Royal Swedish Academy of Engineering Sciences)

In 2016 Ulf Olofsson received the IMechE John F Alcock Memorial Prize for work regarding block brakes during winter conditions.

Outgoing
Mats Berg, Sebastian Stichel and Carlos Casanueva, key members of the academic exchange project Railway Engineering System Dynamics with Southwest Jiaotong University, 2016-2020
Sebastian Stichel, Adjunct professor at Beijing Jiaotong University, 2017-2020
Carl Wersäll, guest researcher at University of Tokyo for 2 months in 2019

Incoming
Xu Ning, Assistant professor from Beijing Jiaotong University at KTH for one year in 2020.
María D. Martínez-Rodrigo, Associate Professor from Universitat Jaume I, Spain, at KTH for half year 2019.
Pedro Musceros Romero, Professor from Universitat Politècnica de València, Spain, at KTH for half year 2019.
Zhang Lele, professor from Beijing Jiaotong University at KTH for one month in 2017.
Ren Zunsong, professor from Beijing Jiaotong University at KTH for one month in 2017.

Special educational events
- 2019, Visit to SJ depot in the context of SD2307 Rail Vehicle Technology course
- 2019, Visit to the Nordic Rail in Jönköping for the students in the different Railway related programmes.
- 2019, organization of railway related career promotion activities for 1st cycle students in construction engineering at KTH, coordinated by JBS.
- 2018 and 2019, collaboration in the Järnvägsbranschens Mastermässa at KTH, coordinated by JBS.
Reports related to the new high-speed lines in Sweden

KTH Railway Group has carried out several studies on the technical and economical viability of dedicated high-speed railways in Sweden. Some of them are mentioned below.

https://kth.diva-portal.org/smash/record.jsf?dswid=8543
https://kth.diva-portal.org/smash/record.jsf?dswid=8543
https://kth.diva-portal.org/smash/record.jsf?dswid=8543
https://kth.diva-portal.org/smash/record.jsf?dswid=8543

Promotions
In 2019 Oskar Fröidh was promoted to Associate Professor in Railway Systems
In 2019, Markus Bohlin was appointed Full Professor in Computer Science with focus on Artificial Intelligence at Mälardalen University. Markus was subsequently accepted as Visiting Professor at KTH Transport Planning.
In 2018 Carlos Casanueva was promoted to Associate Professor in Rail Vehicle Technology.

Faculty opponent or evaluation committee for PhD
2020 Markus Bohlin, Second supervisor (Zweitgutachter) Norman Weik, RWTH Aachen.
2019 Mats Berg, evaluation committee of Annemieke Meghoe, University of Twente, Enschede
2019 Carlos Casanueva, evaluation committee of Mandeep Singh Walia, Chalmers, Gothenburg.
2019 Sebastian Stichel, evaluation committee of Xin Li, Chalmers, Gothenburg.
2018 Sebastian Stichel, Second supervisor of Frédéric Schöler, RWTH Aachen.
2018 Sebastian Stichel, Second supervisor of Christof Bernsteiner, TU Graz.
2017 Sebastian Stichel, Second supervisor of Ulrich Spangenberg, University of Pretoria.
2017 Sebastian Stichel, evaluation committee of Ivan Zenzerovic, Chalmers, Gothenburg.
2016 Mats Berg, evaluation committee of Petter Røe Nåvik, NTNU, Trondheim.
2016 Mats Berg, evaluation committee of Seyed Milad Mousavi Bideleh, Chalmers, Gothenburg.
2016 Sebastian Stichel, evaluation committee of Matthias Asplund, LTU, Luleå.
2016 Mats Berg, evaluation committee of Peter Persson, LTH, Lund.
2016 Mats Berg, evaluation committee of Behrouz Afzali-Far, LTH, Lund.
2015 Sebastian Stichel, evaluation committee of Kalle Karttunen, Chalmers, Gothenburg.

International Conference host
Markus Bohlin acted as Program Chair and Johan Högdahl as Program Co-Chair for RailNorrköping 2019.

Editorial board member of international journals
Journal of Rail and Rapid Transit: Carlos Casanueva (associate editor) and Mats Berg
Vehicle System Dynamics: Mats Berg
International Journal of Rail Transportation: Mats Berg (associate editor)
International Journal of Railway Technology: Sebastian Stichel and Ulf Olofsson
Journal of Railway Engineering Science: Sebastian Stichel (associate editor) and Raid Karouni

Handbook co-authorship

Special issue co-authorship
WEAR special issue of CM2015 conference: Mats Berg and Sebastian Stichel
KTH Railway Group in media 2019 and 2020

Bo-Lennart Nelldal - Transport Planning
https://www.nyteknik.se/opinion/visioner-duger-inte-som-underlag-for-framtidens-transporter-6971553

https://www.svt.se/nyheter/utebliven-effekt-for-tagavgift

http://www.affarsresenaren.se/2019/07/03/dags-att-krossa-nytterna--42820496

https://www.dn.se/ekonomi/hogastighetstag-trafikverket-stoppade-kalkyl-som-gymnade-utbyggnad/

https://www.vagabond.se/artiklar/nyheter/20200203/taget-punktligare-an-flyget/

https://www.gp.se/nyheter/sverige/experten-na-oense-om-h%C3%B6ghastighetsbanornas-%C3%B6nsamhet-i-22362777

https://omni.se/staffavgift-for-tagbolag-har-inte-hafnagon-effekt/a/JkoRoy7

https://tv-india.com/vid/iotsiqafmqu0nY/1skf-insight-rail-interview-bo-lennart-nelldal-professor-train-traffic-planning.html

Oskar Fröidh - Transport Planning
https://sverigesradio.se/sida/avsnitt/1270850?programid=4091

https://sverigesradio.se/avsnitt/1287204

https://www.infrastrukturhyster.se/se/20190803/16511/forarlosa-tag-snart-har

https://www.jarnvagnsnyheter.se/se/20190803/7662/placering/jarnvagsstationer-centralt

https://sverigesradio.se/sida/avsnitt/1304492?programid=412

Karl Kottenhoff - Transport Planning

https://sverigesradio.se/avsnitt/1270850?programid=4091

https://www.infrastrukturnyheter.se/se/20190803/17591/kth-professor-vill-se-fler-smarta-brosensorer

Raid Karoumi – Structural Engineering and Bridges
https://www.infrastrukturhyster.se/se/20190803/17591/kth-professor-vill-se-fler-smarta-brosensorer

Gerhard Troche - Transport Planning

Stichel/Berg/Andersson - Rail Vehicles
https://www.svd.se/darfor-ar-det-ratt-att-bygga-nya-stambanor

https://www.ny teknik.se/fordon/kth-experten-missvisande-om-svenska-hogastighetstag-6981826

https://www.aftonbladet.se/nyheter/a/Wb2qqj/kth-experten-missvisande-om-snabba-tag

https://www.aftonbladet.se/nyheter/a/Wb2qqj/kth-experten-missvisande-om-snabba-tag

https://www.bt.se/okategoriserade/kth-experten-missvisande-om-snabba-tag/

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Andreas Andersson</td>
<td>Capacity assessment of arch bridges with backfill: Case of the old Arsta railway bridge</td>
<td>2011.</td>
</tr>
<tr>
<td>36</td>
<td>Anneli Orvnäs</td>
<td>On Active Secondary Suspension in Rail Vehicles to Improve Ride Comfort</td>
<td>2012.</td>
</tr>
<tr>
<td>39</td>
<td>Dirk Thomas</td>
<td>On rail vehicle dynamics in unsteady crosswind conditions - Studies related to modelling, model validation and active suspension</td>
<td>2013.</td>
</tr>
<tr>
<td>40</td>
<td>Saeed Abbasi</td>
<td>Towards Elimination of Airborne particles from rail traffic</td>
<td>2013.</td>
</tr>
<tr>
<td>41</td>
<td>Yi Zhu</td>
<td>Adhesion in the Wheel-Rail Contact</td>
<td>2013.</td>
</tr>
<tr>
<td>43</td>
<td>John Leander</td>
<td>Refining the fatigue assessment procedure of existing steel bridges</td>
<td>2013.</td>
</tr>
<tr>
<td>44</td>
<td>Mohammed Safi</td>
<td>Life-Cycle Costing - Applications and Implementations in Bridge Investment and Management</td>
<td>2013.</td>
</tr>
<tr>
<td>45</td>
<td>Ignacio Gonzalez</td>
<td>Application of monitoring to dynamic characterization and damage detection in bridges</td>
<td>2014.</td>
</tr>
<tr>
<td>46</td>
<td>Shahrin Nasir</td>
<td>Intermodal container transport logistics to and from Malaysian ports – Evaluation of customer requirements and environmental effects</td>
<td>2015.</td>
</tr>
<tr>
<td>48</td>
<td>Guangli Du</td>
<td>Life cycle assessment of bridges, model development and case studies</td>
<td>2015.</td>
</tr>
<tr>
<td>49</td>
<td>Babette Dirks</td>
<td>Simulation and measurement of wheel on rail fatigue and wear</td>
<td>2015.</td>
</tr>
<tr>
<td>50</td>
<td>Anders Lindfeldt</td>
<td>Railway capacity analysis – Methods for simulation and evaluation of timetables, delays and infrastructure</td>
<td>2015.</td>
</tr>
<tr>
<td>55</td>
<td>Alireza Qazizadeh</td>
<td>On Active Suspension in Railway Vehicles</td>
<td>2017.</td>
</tr>
<tr>
<td>58</td>
<td>Therese Arvidsson</td>
<td>Train–Track–Bridge Interaction for the Analysis of Railway Bridges and Train Running Safety</td>
<td>2018.</td>
</tr>
<tr>
<td>59</td>
<td>Yehze Lyu</td>
<td>Open Rail System Tribology</td>
<td>2018.</td>
</tr>
<tr>
<td>60</td>
<td>Yingying Cha</td>
<td>Airborne particles in railway tunnels</td>
<td>2018.</td>
</tr>
</tbody>
</table>
The research focus at the Rail Vehicles unit is vehicle-track dynamic interaction, but studies are also carried out on pantograph-catenary interaction and on vehicle energy usage. The staff members are listed below.

Professor Mats Berg mabe@kth.se
Professor Sebastian Stichel stichel@kth.se
Associate Professor Carlos Casanueva carlos@kth.se
Researcher Zhendong Liu zhendong@kth.se
Researcher Saeed Hossein-Nia nsho@kth.se
Researcher Rickard Persson patper@kth.se
Researcher Alireza Qazizadeh alirezaq@kth.se

RESEARCH PROJECTS

RV29. Onboard condition monitoring of vehicle-track dynamic interaction

Project coordinator KTH
Project leader at KTH Mats Berg
Scientists at KTH Rohan Kulkarni, Alireza Qazizadeh, Ulf Carlsson, Sebastian Stichel
Source of funding: KTH Railway Group (mainly).

Condition monitoring is introduced more and more in rail systems to support decisions on vehicle and infrastructure maintenance. Vehicle-track interaction is traditionally monitored from the track, but the present project aims at using sensors onboard in-service vehicles to detect malfunctions and suggest proper vehicle and/or track actions. Key malfunctions are ride discomfort and running instability with focus on resolving such issues by relevant maintenance. The work is a collaboration with the Railway Group members.

Literature studies in the field have been carried out including different algorithms and signal processing methods. Running instability detection and proper mitigation is planned to be in focus. If possible, axle box accelerations measured on X2000 vehicles should be used for case study.

First a joint PhD work was carried out with Politecnico di Milano dealing with monitoring of track irregularities from accelerations of Italian in-service vehicles using machine learning classification. Both simulation and measurement results were used in this process and limit values for the irregularities were introduced. Promising results were achieved and an associated paper has been published.

Decision boundary for bogie response in relation to good/bad track standard (GTS/BTS).
As a first step in condition monitoring of running instability, simulations were performed for a vehicle similar to an X2000 coach including measured wheel profiles and degraded yaw dampers. Vehicle speed was varied slightly in the different simulations, but the rail profile and the track gauge were kept constant. Lateral accelerations of the bogie frames and axle boxes were recorded and subject to different machine learning classification algorithms. Also here promising results were obtained and the work was presented at an international conference in September 2019. The work on running instability has continued changing other parameters etc and is linked to the Shift2Rail projects IN2TRACK2 (WP3) and PIVOT-2 (WP5 & WP7).

RV30. Innovative technical solutions for improved train DYNAmics and operation of longer FREIGHT Trains (DYNAFREIGHT)

<table>
<thead>
<tr>
<th>Project coordinator</th>
<th>UNIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project leader at KTH</td>
<td>Mats Berg</td>
</tr>
<tr>
<td>Scientists</td>
<td>from 10 European partners (at KTH: Visakh Krishna, Sebastian Stichel)</td>
</tr>
<tr>
<td>Source of funding:</td>
<td>European Commission (Horizon 2020)</td>
</tr>
</tbody>
</table>

The DYNAFREIGHT project provides inputs for the development of the next railway freight propulsion concepts within Shift2Rail. Two main areas are addressed:

- Freight running gear for locomotives: DYNAFREIGHT designs and develops the necessary concepts that allows a locomotive freight bogie to reduce wheel and track wear, to have lower noise and lower LCC, by focusing on:
 - Materials with freight vehicle applicability that allow a lighter bogie frame.
 - Noise optimized wheelsets and absorbing structures to reduce bogie noise.
- Operation of long freight trains: following the outcomes of MARATHON, DYNAFREIGHT prepares the path for regular operations of long freight trains:
 - Defining functional, technical and homologation requirements for a radio remote controlled system.
 - Proposing safety precautions in train configuration and brake application by simulating the longitudinal forces and the derailment risk of long freight trains.
 - Identifying infrastructure adaptions for the operation of long freight trains.

KTH mainly participates in the project by evaluating radial steering bogie concepts and tolerable longitudinal (compressive) forces in long freight trains.

RV31. Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles (RUN2RAIL)

Project coordinator: UNIFE
Project leader at KTH: Sebastian Stichel
Scientists: from 15 European partners (at KTH: Rickard Persson, Per Wennhage, Rocco Giossi, Ines Lopez Arteaga)
Source of funding: European Commission (Horizon 2020).

The RUN2RAIL project explores an ensemble of technical developments for future running gear, looking into ways to design trains that are more reliable, lighter, less damaging to the track, more comfortable and less noisy. The project develops across four thematic Work Streams: (1) Innovative sensors & condition monitoring, (2) Optimised materials & manufacturing technologies, (3) Active suspensions & mechatronics, (4) Noise & Vibration. KTH worked in work streams (2) to (4). In (2) the general feasibility of using composite materials was investigated. KTH was leading (3) and mainly developing a concept for an innovative two-axle vehicle with only one suspension step and active vertical and lateral suspension as well as active wheelset steering. We also contributed to a possible future homologation strategy for rail vehicles with active suspension. In (4) KTH mainly worked on theoretical and experimental characterisation of suspension elements with respect to vibration transmission.

RV32. Performance Improvement for Vehicles On Track (PIVOT-1 and PIVOT-2)

Project coordinator: Siemens Mobility GmbH
Project leader at KTH: Sebastian Stichel
Scientists: from 16 European partners (at KTH: Mats Berg, Peter Göransson, Rickard Persson, Per Wennhage, Carlos Casanueva, Saeed Hossein-Nia, Anton Shipsha, Rocco Giossi, Johan Larsson, Visakh Krishna, Rohan Kulkarni)
Sources of funding: Trafikverket and European Commission (Horizon 2020).

PIVOT-1 and PIVOT-2 build on the ROLL2RAIL lighthouse project and address mechanical systems within rail vehicles: Carbodies, Running Gear, Brakes, Entry Systems and Interiors including the Cab. The projects use a system engineering approach. The overall ambition is to develop technologies that are lighter, more energy efficient, more comfortable for passengers and with a lower impact on the track, thereby reducing the life cycle cost not only of the vehicle itself, but of the entire railway system. Technologies that increase the operational reliability of trains, causing less travel disruptions, ensuring that passengers get to destination on time and delivering a better service are also objectives. It is expected that technologies developed should automatically promote the increase of the transport capacity of railway lines.

Curving performance of two-axle concept vehicle with passive respectively active steering
KTH is in these projects mainly working on the development of concepts for light weight car bodies and bogie frames with novel materials like sandwich materials. Another concept that is pursued is a two-axle single stage suspension vehicle with active wheelset guidance and active suspension to improve ride comfort, cf. RUN2RAIL and NEXTGEAR.

RV33. IMPACT-1 and IMPACT-2

Project coordinator: DLR / Trafikverket
Project leader at KTH: Mats Berg
Scientists: from 7/13 European partners (at KTH: Mats Berg)
Sources of funding: Trafikverket and European Commission (Horizon 2020)

The Shift2Rail research programme is monitoring the impact of its research and demonstration activities. For this purpose, Key Performance Indicators (KPIs) are used. In particular, three high-level KPIs are defined and quantified:

- Capacity of the European rail system should be doubled.
- Life Cycle Cost of the system should be halved.
- Reliability of the system should be improved so that the lack of punctuality is halved (e.g. increasing punctuality from 80 to 90%).

To coordinate these efforts a so-called Cross Cutting Activity through IMPACT-1 and IMPACT-2 (WP4 in both projects) is launched. A challenge in the KPI definitions is that the Shift2Rail research is very broad in scope covering all components (infrastructure, vehicles, operation etc) in the rail systems which in turn comprise of high-speed, regional and urban passenger systems as well as rail freight. The research is organized in more than 40 so-called Technology Demonstrators (TDs) and in principle each TD should contribute to the goals listed above.

Each TD leader is to indicate which (low-level) KPIs the TD has defined and how these can be linked to the high-level KPIs through interface KPIs, including their units, proposed by the IMPACT projects. Further, reference parameters and values are being defined as a baseline for Shift2Rail and estimates on percentage improvements on these are obtained from the TD leaders. KTH is mainly involved in the railway infrastructure part (IP3), excluding signalling, in this process and is collaborating with VTI. A model for the IP3 contributions to the Shift2Rail high-level KPIs is formulated and quantitative estimates are calculated. Further model improvements are ongoing.

RV34. Future Improvement for Noise and Energy (FINE-1 and FINE-2)

Project coordinator: Bombardier Transportation GmbH / Thales
Project leader at KTH: Mats Berg
Scientists: from 9/14 European partners (at KTH: Zhendong Liu, Peter Göransson, Romain Rumpler, Siddharth Venkataraman)
Sources of funding: Trafikverket and European Commission (Horizon 2020)

The Shift2Rail research programme is monitoring the impact of its research and demonstration activities, in particular by means of three high-level Key Performance Indicators: Capacity, Life Cycle Cost and Reliability. One indicator at a lower level, but still important, is the energy usage at train operation. To coordinate the energy efforts a so-called Cross Cutting Activity is launched through the projects FINE-1 and FINE-2. These projects also include studies on noise from trains.

A first step was to define an energy baseline for the four main service categories of Shift2Rail: High-speed, regional and urban passenger trains as well as freight trains. State-of-the-art technology with respect to energy performance

Proposal of energy labelling for rail vehicles.
was surveyed and representative train configurations and operational conditions were defined. A software for train energy simulation was developed through the Shift2Rail open-call project OPEUS. The improvements in energy performance in Shift2Rail are being evaluated with this software. Reductions in energy usage at train operation are foreseen by improved traction and braking technologies, reduced running resistance, eco-driving, more efficient energy supply etc.

An important aspect is also energy labelling, that is, how train energy performance can be quantified in a simple way so that different trains can be compared with each other and also how trains can be compared with other modes of transport from an energy perspective. In the European Union there are many products that have standardized ways of labelling their energy performance. So far the labelling mainly applies to household products, but efforts are now ongoing to also include other sectors like transport. For transport the units might be Wh per person-km or net-tonne-km. The labelling may also include corresponding CO2 emissions.

KTH has completed a literature study on energy labelling into a FINE-1 technical report. KTH has also, after extensive interaction with the project partners, proposed an energy label for trains referring to different train categories and operational conditions found in EN 50591. This kind of label should be useful to train manufacturers, operators and passengers etc as well as infrastructure managers and other authorities. The KTH contributions have been consolidated into a journal paper.

In FINE-2 the KTH work on energy labelling is continuing including further stakeholder analysis by means of a questionnaire as well as refinements on the labelling proposal. KTH will also continue working on modelling and simulation of sound radiation from trains for defined cases.

RV35. Real time information applications and energy efficient solutions for rail freight (FR8HUB)

<table>
<thead>
<tr>
<th>Project coordinator</th>
<th>Trafikverket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project leader at KTH</td>
<td>Mats Berg (WP1, WP4, WP6)</td>
</tr>
<tr>
<td>Scientists</td>
<td>from 14 European partners (at KTH/WP6: Zhendong Liu)</td>
</tr>
<tr>
<td>Sources of funding:</td>
<td>Trafikverket and European Commission (Horizon 2020)</td>
</tr>
</tbody>
</table>

FR8HUB is to bring advanced technologies and digitalization processes to the rail freight market and consists of six work packages. The KTH Railway Group is participating in WP1 Migration plan, WP4 Intelligent video gate, and WP6 Freight loco of the future. The KTH involvement in WP6 is described below.

In WP6 KTH works on Task 6.4 Study implementation of power peak shaving. For smart electric power grids, power peak shaving is being used to avoid installation of capacity to supply peaks of variable loads. KTH works on smart train operation for which the power demand is reduced without changing the timetable (and other partners work on onboard energy storages). In contrast to ECO driving, aiming at reducing the energy usage, this approach will focus on studying the influence of train speed profile (driving style) reducing the amplitude of the highest power peaks without violating the timetable. For a given railway line, freight train and timetable, simulations are suggesting an optimized speed profile with respect to power demand.

![Five speed profiles giving the same travel time and distance.](image1)
![Traction power vs time for the five cases above.](image2)
and energy usage. It would be a simple and economical way for both infrastructure managers and train operators, especially in countries where the train operators have also to pay for high power demand, not only for the energy usage. A simplified study was carried out to highlight the applied methodology. It assumes a synthetic track profile and freight train defined in EN 50591.

For a given Swedish railway line, power and energy usage simulations are carried out for a specified freight train running at different speed profiles but still with the same total running time. The KTH in-house software STEC is being used for this purpose. We are also using energy and GPS data recorded by the train’s energy meter, provided by Trafikverket, as a reference. An important issue is the ability to extract power demand as two-second samples from the energy meter.

RV36. Research into enhanced track and switch and crossing system 2 (IN2TRACK-2)

<table>
<thead>
<tr>
<th>Project coordinator</th>
<th>Network Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project leader at KTH</td>
<td>Mats Berg (WP3)</td>
</tr>
<tr>
<td>Scientists</td>
<td>from 28 European partners (at KTH/WP3: Rohan Kulkarni, Alireza Qazizadeh, Saeed Hossein-Nia)</td>
</tr>
<tr>
<td>Sources of funding</td>
<td>Trafikverket and European Commission (Horizon 2020)</td>
</tr>
</tbody>
</table>

In WP3 Optimised track system, KTH is working on Task 3.5 Wheel-rail interaction, more precisely on two topics: Investigate and control the hunting motions on track, and Understanding and mitigating curve squeal.

Investigate and control the hunting motions on track

Vehicle hunting motion is a classical issue in vehicle-track dynamic interaction. This periodic (sinusoidal) lateral motion is a safety concern and can also cause passenger discomfort. Typically, this running instability appears at fairly high vehicle speed and on straight track or in large-radius curves.

The main cause could be poor vehicle yaw dampers or too soft primary suspension. But the actual wheel-rail geometry match and track gauge are also key quantities. A key geometric quantity for the wheel-rail (wheelset-track) interface is the equivalent conicity, cf. EN 15302.

The wheel-rail pair is categorised based on the equivalent conicity corresponding to 3 mm lateral wheelset displacement. Usually this conicity should be kept low to reduce the risk of hunting motion. However, having fairly low equivalent conicity is not sufficient to avoid running instability, as this instability of the vehicle also depends on the equivalent conicity function with lateral wheelset displacement. Therefore, a question has arisen if there are other parameters at the wheel-rail interface that play a decisive role for the running stability. Polach proposed a Nonlinearity Parameter (NP) to quantify the nonlinearity of equivalent conicity function. The objective of the present work is to investigate, through simulations, the effect of NP on running instability and to suggest further vehicle and track actions (limit values etc) to reduce the risk of vehicle hunting motion. The conclusions should state to what extent equivalent conicity should/could be accompanied by other geometric parameters, like NP, to better explain and mitigate running instability.

Understanding and mitigating curve squeal

In the wheel-rail rolling contact there is always some degree of sliding motion in the contact patch, both laterally and longitudinally. At traction (acceleration) and braking (retardation) the sliding motion is mainly longitudinal whereas in curve negotiation also the lateral sliding motion can be substantial. Curve negotiation, especially in tight curves, can cause excessive wheel and rail damage but also noise. In particular, squeal noise causes human annoyance. Squeal noise often occurs at the leading inner wheel of a bogie or two-axle vehicle. It can also occur at the flange of the outer wheel but less common. Squeal noise is associated with the falling part of the creep curve in which the friction value drops at higher creepages and the creep forces drop consequently. This causes instability in the system which eventually leads to stick-slip motion and squeal noise. A key system design and maintenance action is therefore to reduce the sliding motion in the contact patches during curve negotiation.

The objective of this work is to investigate, through simulations, system parameters that are closely related to the sliding motion and the associated curve squeal as well as mitigations of the squeal noise. In addition to the curve radius, wheel and rail profiles, wheel-rail friction and bogie steering ability are key parameters. The study will present numerical results along with design and maintenance actions to reduce the occurrence and level of curve squeal noise.

![Running instability for a vehicle with two different wheel profiles.](image)
RV37. **NEXT generation methods, concepts and solutions for the design of robust and sustainable running GEAR (NEXTGEAR)**

Project coordinator: UNIFE
Project leader at KTH: Sebasit Stichel
Scientists: from 16 European partners (at KTH: Carlos Casanueva, Rickard Persson, Per Wennhage, Saeed Hossein-Nia, Anton Shipsha, Rocco Giossi)

Source of funding: European Commission (Horizon 2020)

The rail sector has recently seen only limited changes in the running gear. A reason is that innovations have the tendency to increase the first cost of the running gear while they reduce the LCC by reduced maintenance costs. The long-term cost reduction, however, is not easy to quantify. This dilemma will be addressed in WP1 where an updated so-called Universal Cost Model based on the one from the ROLL2RAIL project will be developed that makes it possible to judge the economic impact of the innovation suggested for an operator using the vehicle. How can the costs for buying, operating and maintaining the vehicle be influenced? Lower bogie weight would reduce wheel-rail forces and allow for higher payload. In WP2, the project is going to suggest ideas that are based both on the use of new materials and new manufacturing methods. Simulation techniques will be explored to allow optimisation of designs. It will be investigated whether required properties of the running gear such as stiffness and damping could be distributed through the structure rather than requiring specific components. In parallel, active control strategies will be investigated to improve the level of ride comfort or reduce wheel and rail damage.

The wheelset is another extremely important and safety-critical component in a rail vehicle. Since it represents a so-called “unsuspended mass” there is a desire to minimize the wheelset weight. The main objective of WP3 is a feasibility study on the use of composite materials for the construction of railway wheelsets. Technology concepts for a lightweight wheelset will be defined. Main focus areas are material selection, durability, manufacturing process and joining methods.

The output of this project will be an important input for the parallel member project in IP1 (PIVOT-2) both regarding the Cost Model and the technical innovations. There will also be a contribution to the overall Shift2Rail KPI’s and partly IP3.

RV38. Development of Functional Requirements for Sustainable and Attractive European Rail Freight (FR8RAIL)

Project coordinator: Trafikverket
Project leader at KTH: Sebastian Stichel
Scientists: from 18 European partners (at KTH: Mats Berg, Carlos Casanueva, Saeed Hossein-Nia, Visakh Krishna)

Sources of funding: Trafikverket and European Commission (Horizon 2020)

The main aim of the FR8RAIL project is the development of functional requirements for a sustainable and attractive European rail freight. The objectives of FR8RAIL are: A 10% reduction on the cost of freight transport measured by tonnes per km. A 20% reduction in the time variations during dwelling and increase attractiveness of logistic chains by making available 100% of the rail freight transport information to logistic chain information.

KTH was one of the main contributors to a WP4 state-of-the-art report reviewing wagon, running gear, wheelset and brake design of freight wagons and also indicating existing models to predict wheel and track deterioration.

A multibody dynamics (Genys) model of a newly developed Y25 bogie with double Lenoir links and cross bracing from Tatravagonka was built, simulations were performed, and the running (hunting) stability and curving performance was compared to a standard Y25 bogie and the running gear developed in the SUSTRAIL project. Also, comparisons of wheel and track wear and Rolling Contact Fatigue were performed together with Virtual Vehicle in Graz. The vehicle dynamics simulations and the wheel wear and RCF calculations were performed by KTH. Rail wear and RCF calculations were performed by Virtual Vehicle with input from KTH.

With first measurement data from Tatravagonka the simulation model has been validated. With the validated model more systematic studies on stability, curving behaviour, track friendliness, wear and RCF have been performed. It turns out that the FR8RAIL bogie is much more...
more track friendly than the standard UIC bogie and also more track friendly than the SUSTRAIL bogie.

In parallel together with CAF new models for wear prediction are developed that shall include material parameters. The aim is to be able in the future to make more educated choices of wheel materials with regard to wear behaviour. Today basically only the initial wheel hardness is part of the prediction model.

We also developed a methodology to use dynamic simulation as a virtual twin to predict wheel life of railway vehicles to optimize maintenance actions. In parallel another method is developed to judge track friendliness taking also rail grinding due to rail damages into account. This methodology gives the opportunity to optimize rail grinding as function of the vehicle performance and in this way makes maximum use of track friendly running gear.

RV39. Digitalization and Automation of Freight Rail (FR8RAIL-2)

Project coordinator Bombardier Transportation GmbH

Project leader at KTH Sebastian Stichel

Scientists from 18 European partners (at KTH: Mats Berg, Carlos Casanueva, Saeed Hossein-Nia, Visakh Krishna)

Sources of funding: Trafikverket and European Commission (Horizon 2020).

FR8RAIL-2 focuses on improving the freight eco system by addressing various challenges: Automatic couplers, provided with electrical and data transmission functionalities will massively improve the efficiency of the train composition process, new telematics and electrification will enable Condition Based Maintenance (CBM), improved methods for annual and short-term timetable planning will help traffic operators increasing the overall capacity and raise punctuality, future freight wagon design is a stream that will contribute in improving reliability of the freight transport while increasing the payload per metre of train. The latter one will be propelled by future mainline electric freight locomotives featuring highly flexible freight propulsion systems with reduced operational costs. Furthermore, these new freight trains will be propelled by more than one locomotive running with distributed power, thus allowing long freight trains up to 1500 m. Last but not least, focus is given to driver advisory systems that are connected (C-DAS) to the traffic management systems, further enhancing capacity, improving punctuality and optimize energy consumption of the railway system.

In FR8RAIL-2 for KTH the activities that started in the first phase of the project continue (see above). In 2019 also work on a new methodology to predict wheel wear and RCF with help of machine learning techniques has been started. Since the simulation times for wear and RCF prediction are drastically reduced, this new methodology can be used to optimize wheel profiles also with respect to the long-term behaviour. This is up to now not possible because of the long simulation times.

RV40. Economic priorities that enable reliable and attractive railway transportations

Project coordinator: VTI
Project leader at KTH: Sebastian Stichel
Scientists at KTH: Saeed Hossein-Nia, Visakh Krishna, Carlos Casanueva, the third project partner is Trafikverket.

Source of funding: Vinnova.

The annual increase in traffic creates a high capacity utilization on many parts of the railway network. Hence, the consequences of disturbances in the traffic due to infrastructure failures are increasing over time. Another issue is the increasing costs for maintenance.

Whilst there is a well-developed methodology for infrastructure investments, there is a lack of corresponding knowledge to prioritize between maintenance activities and to take informed decisions on when to renew the asset instead of continuing the maintenance activities. A multi-disciplinary approach and knowledge from the industry is required in order to tackle the railway sector’s problems and challenges and provide better conditions for prioritizing between activities, as well as creating more reliable and attractive railway transportations. The purpose of the project is thus to generate knowledge on the relationships that are necessary to strengthen the attractiveness of the railway system and its ability to provide transport services. Specifically, by engaging different disciplines and the industry, the project will provide better conditions for carrying out the right maintenance and renewal activities at the right time and to prevent disturbances in traffic. In addition, the project will generate knowledge on how a socio-economic priority of activities can be put into practice in a cost-efficient way, while also providing scope for innovations and productivity improvements.
Structural Engineering and Bridges – SB

The division is conducting research and education in planning and design of structures including railway bridges. One important part of this research focuses on the modelling and simulation of the static/dynamic behaviour and fatigue lifespan of railway bridges and on the application of modern measurement technique for the assessment of bridges and for calibration of numerical models. More information on the research performed at the division and the publications are available on www.byv.kth.se.

Professor Raid Karoumi
raid.karoumi@byv.kth.se
Professor Jean-Marc Battini
jean-marc.battini@byv.kth.se
Professor Nicole Kringos
nicole.kringos@abe.kth.se
Associate professor John Leander
john.leander@byv.kth.se
Adjunct professor Costin Pacoste
costin.pacoste@byv.kth.se
Research engineer Andreas Andersson
andreas.andersson@byv.kth.se

RESEARCH PROJECTS

SB15. Controlled dynamic field tests for accurate assessment of railway bridges to higher train speeds

Researchers
Jean-Marc Battini (main supervisor)
Andreas Andersson (co-supervisor)
Mahir Ülker Kaustell (co-supervisor)
Hesham Elgazzar (PhD student until 2016-07-31)
Johan Lind Östlund (PhD student from 2016-08-01)

Dynamic analyses of railway bridges present several uncertainties and often predict vibrations that are higher than in reality, especially when high speed trains are considered. These uncertainties are due to the soil-structure interaction, the friction at the supports, the effect of the ballast and the value of the damping at large vibrations. The purpose of this project is to study these parameters by combining FEM analyses and field measurements and to propose guidelines for implementing accurate FE models of railway bridges. The first part of the project focused on the bridges with integrated backwalls along the Bothnia Line. The second part of the project focuses more specifically on the influence of the soil-structure interaction on simply supported bridges. The project started in 2014. The project has resulted in the following publications:

Elgazzar H., 2017. End-Shield Bridges for High-Speed Railway - Full scale dynamic testing and numerical simulations. Licentiate thesis, KTH.
SB17. Risk- and reliability-based assessment of existing steel bridges

Researchers
John Leander (main supervisor)
Raid Karoumi (co-supervisor)
Sarah Tell (PhD student)

The aim is to develop a risk-based framework with the purpose of supporting decision makers in the choice of actions to extend the service life of steel bridges. The framework should be able to consider and combine information from previous investigations, inspections, measurements and sophisticated theoretical analyses. The project will be limited to steel bridges and degradation phenomena as fatigue and corrosion. The expected outcome of the project is a detailed risk-based methodology supporting rational decisions considering a combination of theoretical assessments, monitoring, and inspections.

The project has resulted in the following publications:

SB18. IN2TRACK2 WP5

Researchers
Raid Karoumi (main supervisor)
Andreas Andersson (co-supervisor)
John Leander (co-supervisor)
Sarah Tell (PhD student)
Reza Allahvirdizadeh (PhD student)

For railway bridges on high-speed lines, the dynamic performance needs to be assessed to assure traffic safety and riding comfort during train passages. The current design codes are results from research done in the 1980ies and 1990ies, e.g. reported in ERRI D214. Recent research indicate that several of these regulations are in need of revision.

The project deals with assessing the actual dynamic behaviour of railway bridges as well as development of a damper device for improving the dynamic behaviour of critical bridges. Issues such as soil-structure interaction, support conditions, and load amplitude dependent behaviour will be studied, using a mobile dynamic exciter.

The work includes extensive field tests on bridges in Sweden and in Portugal.

Methods for dynamic analysis will be improved and new approach will be proposed that can be further developed and implemented in future bridge design codes. The project will also develop guidelines for how to model new and existing bridges for bridge-train dynamic analysis.

The work is divided in the following research activities
- Damping and resonance under rapid cyclic loading.
- Passive dampers to improve bridge damping.
- Proposal for improved design philosophy.

The project has resulted in the following publications:

Deliverable D5.1, 2019. IN2TRACK2 WP5 Tunnel and Bridge I2T2 report.
Electric Power Engineering – EP

The Department for Electric Power and Energy Systems at the School of Electrical Engineering and Computer Science carries out research and education in the field of electric railway traction. That includes traction motors, transformers, converters and electromechanical devices. Research on railway power supply systems is conducted together with the Department for Electric Power Systems.

RESEARCH PROJECTS

EP7 AC/AC Modular Multilevel Converters for Railway Applications

Researchers: PhD student: Luca Bessegato. Luca Bessegato defended his Ph.D thesis on April 26, 2019
Supervisors: Staffan Norrga, norrga@kth.se
Stefan Östlund, stefano@kth.se
Reference group members:
Hans-Peter Nee KTH, Lennart Ångqvist KTH, Håkan Kols Trafikverket, Andes Bulund Trafikverket, Niklas Biedermann Trafikverket.

Period 2014–2019
Source of funding/partners: Railway Group/Trafikverket

Trafikverket has introduced new modular multi-level railway power supply converters. These converters have characteristics that are different from previous generations. The project focuses on the dynamic behavior of the converters as seen from the railway power grid and the three-phase grid. Studies on the input admittance of the modular multilevel converter (MMC), have provided an insight on the interactions between the three-phase grid and the converter. The results have been verified on a developed prototype converter.

K. Ilves, L. Bessegato, S. Norrga, “Comparison of cascaded multilevel converter topologies for AC/AC conversion”, 2014 ECCE Asia,

EP8 Silicon carbide based power electronics for electric trains

Researchers: PhD student Martin Lindahl
martlin@kth.se
Supervisors: Hans-Peter Nee, hansi@kth.se
Stefan Östlund, stefano@kth.se

Reference group members:
Hans-Peter Née KTH, Anders Blomberg Bombardier Transportation, Stefan Östlund KTH

Period 2018—2022
Sources of funding: KTH Railway Group, Bombardier Transportation

The power semiconductor material silicon carbide (SiC) gives the benefits of large reductions of power losses. SiC power semiconductors have the potential to enter the commercial market in electric traction for trains. The purpose of this work is to investigate how the benefits of SiC can be utilized in the best way for rail applications. Areas of investigation are e.g. reduced total energy losses, improvements in system topology and overvoltages on the motor winding. The work includes building of prototype converters.

KTH Railway Group

Status Report 2020

System and Component Design (Dept of Machine Design) – ME

KTH Machine Design is performing research and education in the area of tribology of the wheel-rail contact. That includes the adhesion, wear and lubrication of the wheel-rail contact. In contrast to other well-investigated machinery, such as roller bearings, the wheel-rail contact is an open system. It is exposed to dirt and particles and natural lubrication, such as high humidity, rain and leaves, all of which can seriously affect the contact conditions and the forces transmitted through the contact. A focus area is also the air quality around underground railway platforms and their source focusing on mitigation of the problems. A handbook published by Woodhead Publisher Limited and entitled Wheel/rail interface handbook has been edited by Roger Lewis Sheffield University UK and Ulf Olofsson Railway Group, KTH. In 2016 Ulf Olofsson received the IMechE John F Alcock Memorial Prize for work regarding block brakes during winter conditions.

RESEARCH PROJECTS

ME 1. Track-vehicle interaction (SAMBA 6)–Wheel rail wear mechanisms and transitions

Project leader Ulf Olofsson
Graduate student Jon Sundh
Research engineer Peter Carlsson

Sources of funding: Banverket and KTH Railway Group

An observation that can be made about wear is that an increase of the severity of loading at some stage leads to a sudden change in the wear rate. Wear transitions are identified using wear maps and are defined in terms of sliding velocity and contact pressure. Wear regimes are related to expected wheel all contact conditions and contact points (tread/flange). Such wear assessments are becoming more significant as train speeds are increasing and new specifications are being imposed relating to safety and reliability. It can also help in determining more efficient maintenance schedules on particular routes; where different track profiles may be needed to reduce the severity of the wheel rail contact and where application of lubrication or change of material may be necessary to reduce wear problems. The transitions between the different wear mechanisms were studied with special emphasis on the transition between mild and severe wear. Jon Sundh Defended his PhD thesis on the 11th of December 2009.

Some selected publications

30
ME 2. Adhesion between railway wheel and rail

Project leader: Ulf Olofsson
Graduate student: Zhu Yi
Research engineer: Peter Carlsson

Sources of funding: Banverket, SL and KTH Railway Group

The wheel rail contact operates with the limitations imposed by the friction existing between steel surfaces. Poor adhesion in braking is a safety issue as it leads to extended stopping distances. In traction, however, it is also a performance issue. If a train experiences poor adhesion when pulling away from a station and a delay is enforced the train operator will incur costs. Similar delays will occur if a train passes over areas of poor adhesion while in service. Fallen leaves can disrupt rail services all over Europe. A mature tree has between 10 000 and 50 000 leaves. There are estimations that thousands of tonnes of leaves fall onto railway lines every year. The leaves are usually swept onto the track by the slipstream of passing trains. While conditions leading to poor adhesion have been well investigated, methods for addressing the problems have not. The purpose of this project is firstly to develop a test method where friction modifiers can be evaluated in contact conditions and an environment that correspond to the wheel rail contact. Secondly, the research aims to develop adhesion models for the railway wheel rail contact including contaminants. Yi Zhu defended his PhD thesis in November 2013.

Some selected publications

ME 3. Airborne particles generated from train-track interaction

Project leader: Ulf Olofsson
Graduate student: Saeed Abbasi
Research engineer: Peter Carlsson

Source of funding: KTH Railway Group

A well-known problem for the rail road industry is that the railway wheel and rail are worn. The profile change of rail on curves makes a large contribution to track maintenance cost. The profile change on wheels can also be significant, especially on a curved track. Another problem is that the material loss from the wheel, rail, brakes and pantograph generate airborne loose debris. Recent studies in underground systems and in stations placed in tunnels shows large numbers of airborne particles. The number and mass of airborne particles less than 10 µm usually exceed acceptable levels in the different countries and cities. There also exist EU guidelines for PM10 (dir 96/62/EG), which often is exceeded (PM10 refers to particles less than 10 microns, which are defined as small enough to enter into the alveoli of the human lung and be potentially dangerous). The purpose of this project is firstly to develop a test method where generated airborne particles can be evaluated in contact conditions and an environment that correspond to the wheel rail contact. Saeed Abbasi defended his PhD thesis in November 2013.

Some selected publications

ME4. Block brakes during winter conditions

Project leader: Ulf Olofsson
Researcher: Yezhe Lyu
Research engineer: Peter Carlsson

Source of founding commission from SL

In trains with tread brakes, the coefficient of friction between the brake block and the railway wheel determines the stopping distance. The blocks have traditionally been manufactured from cast iron materials. Although these blocks have good braking capacity, their use can be restricted due to the squealing noise they emit. Tests of alternative composite block materials have been successful under summer conditions; in regions with snowy winters, however, the use of such materials has been limited due to problems with braking capacity under snowy conditions. This research aims to develop a laboratory-scale test methodology for evaluating the braking capacity of tread brake materials under winter and snowy conditions. A pin-on-disc machine placed in a climate chamber was used for testing, and standard cast iron block material was compared with standard composite block materials. The results indicate that the standard composite block materials generate a much smoother counter wheel surface and a significantly lower friction coefficient under snowy conditions. A second test series evaluated alternative composite block materials, and a candidate material with low noise and a sufficiently high sliding friction coefficient was selected for further study. A third test series examining geometrical changes in the contact surface in terms of milled parallel traces revealed that the braking capacity under winter conditions can be increased by such milling if the parallel traces are properly oriented – in this case, at an angle of 45° to the sliding direction. Both friction coefficient and wear have been evaluated at five different temperatures from +10 to −30 °C. The cast iron block demonstrated the greatest wear at −10 and −20 °C, due to the ductile-to-brittle transition at low temperatures. For the composite brake block, a gradual decrease in friction with decreasing temperature was found. The sinter brake block was not sensitive to changes in ambient temperature.

Some selected publications

Laboratory test equipment for low temperatures.

ME5. Quiet track

Project leader: Ulf Olofsson
Graduate student: Yezhe Lyu
Senior lecturer: Stefan Björklund
Researcher: Ellen Bergseth
Research engineer: Peter Carlsson

Source of founding EU project FP7 and CSC

The purpose of this work-package within the Quiet-track, FP7, is to develop a noise related track maintenance tool, in the form of an on-board measurement system. As a first step, lab scale tests using a pin-on-disc tribometer were used in order to distinguish how noise changes when the wear mechanism in a sliding contact shifts from normal wear to severe and catastrophic wear. Once the potential for using sound as an indication of severe wear transitions was established, full scale tests were carried out with a rapid transit (metro) train, type C20. The train was equipped with microphones that continuously measured the sound pressure near the wheel rail contact. In order to provoke severe/catastrophic wear, the test train was run in a curve with small radius, and the rails and wheels were carefully cleaned before the tests. The same kind of transfer from mild to severe/catastrophic wear was identified on the full scale test as in the laboratory scale test, confirmed by studying the surface topography and the morphology of the wear particles. Moreover, the full scale test results showed that the sound pressure changed significantly when transferring from mild to severe wear in agreement with the pin-on-disc test results. By comparing noise from the inner wheel/rail contact to noise from the outer wheel/rail contact a wear indication value for the outer wheel/rail contact is suggested in this study. This value can be seen as an advanced parameter from which the probability of severe wear, in the wheel flange/rail gauge face contact of the outer contact, can be estimated. At present, the real time condition monitoring system is set up in Stockholm metro system C20 trains and in the ore line Malmбан.

Yezhe Lyu defended his PhD thesis in April 2018.
Some publications

Field test for the research project Quiet Track in the Högdalen metro depot in Stockholm.

ME6 Models for rail traffic emission factors

Project leader: Ulf Olofsson
Graduate student Minghui Tu
Graduate student Yingying Cha (CSC)
Researcher Anna Hedlund
Research Engineer Peter Carlsson

The project focus is on particle emission factors from rail traffic. The aim of the project is to develop emission factors for their different sources in rail traffic. These emission factors should be integrated into simulation models that can be used to predict the amount of particle emissions from different driving conditions. The effective density of aerosols in railway tunnels has been analyzed.

The air quality in the new opened Citybanan has been studied before and after its opening. One study on the air quality levels on the platforms is published in Aerosol and Air Quality Research. A further study on the air quality inside the train, driver and passenger cabins is published in Environmental Research. A third study model study on how the train frequency and the number of braking events affect the airborne particle emission levels in tunnels is published in Transportation research part D.

A data mining approach has been performed, in which the technical reports, unpublished Swedish reports, on the air quality of the Stockholm Metro system. Together with SLL has measurement stations for air quality been established on the red line in the Stockholm Underground system.

Yingying Cha defended her thesis on September 28, 2018.

Some selected publications

Test equipment in the Tekniska högskolan metro station in Stockholm.
Transport planning – TPL

Planning is essential to make the railway system function and fulfil customer demand, along with societal goals. Important aspects are the efficiency of operations including cooperation and competition with other transport modes, which on an overarching level include accessibility and sustainability – including environmental considerations. The group that works with planning of railway transportation, railway traffic and infrastructure belongs to the Division of Transport Planning (TPL) at the Department of Civil and Architectural Engineering, School of Architecture and the Built Environment (ABE) at KTH. Research and teaching is conducted regarding aspects of railway planning in the areas of freight transportation (including logistics), rail passenger services (including supply and demand), capacity analysis, and signalling system effects on capacity. The group has specialist competencies in traffic planning, railway operation and economics, forecasting models and customer valuations, market analysis for passenger and freight traffic, optimization and simulation models for railway capacity, signalling system traffic implications, and infrastructure planning. The rail transport planning group currently has 15 members under division head Associate Professor Erik Jenelius with visiting and associate professors, researchers, research engineers, and PhD students.

Personnel
Markus Bohlin, Visiting Professor Oskar Fröidh, Associate Professor Behzad Kordnejad, Researcher
Gerhard Troche, Researcher Hans Sipilä, Researcher Anders Lindahl, Research engineer
Josef Andersson, Research engineer Mohammad Al-Mousa, Research engineer.

In spring 2020, seven PhD students (of which three women) were employed and active within the group’s research projects, and one additional PhD student at VTI (Tomas Rosberg) is supervised:
Jennifer Warg Ingrid Johansson Johan Högdahl Niloofar Minbashi
Félix Vautard Vahid Ranjbar Dimitrios Rizopoulos

We also cooperate in projects with Professor Nils Olsson (NTNU, Trondheim) and Bo-Lennart Nelldal (Bolle Rail Research) among others.

Transport Planning represented of (from left to right) Anders Lindahl, Behzad Kordnejad, Bo-Lennart Nelldal, Tomas Rosberg (VTI), Josef Andersson, Ingrid Johansson, Jennifer Warg, Vahid Ranjbar, Oskar Fröidh and Albania Nissan, in deep studies in LKAB Kiirunavaara mine, 2019. Picture: Oskar Fröidh
RESEARCH PROJECTS OVERVIEW

<table>
<thead>
<tr>
<th>New Code</th>
<th>(Previous Code)</th>
<th>Grey shading indicates completed project</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPL F2</td>
<td>(TET F2; ToL 2)</td>
<td>Regional Intermodal Transport Systems – Analysis and Case Study</td>
</tr>
<tr>
<td>TPL F13</td>
<td>(TET F13)</td>
<td>Capacity 4 Rail (C4R)</td>
</tr>
<tr>
<td>TPL F14</td>
<td>(TET F14)</td>
<td>Sustainable and energy efficient regional logistics in the Mälardalen area</td>
</tr>
<tr>
<td>TPL F15</td>
<td></td>
<td>City logistics with pilot study of Tomteboda yard</td>
</tr>
<tr>
<td>TPL F16</td>
<td></td>
<td>ARCC WP2: Real-time yard management</td>
</tr>
<tr>
<td>TPL F17</td>
<td></td>
<td>FR8HUB WP3: Real-time network management and simulation of increasing speed for freight trains</td>
</tr>
<tr>
<td>TPL F18</td>
<td></td>
<td>FR8HUB WP4: Intelligent video gate</td>
</tr>
<tr>
<td>TPL F19</td>
<td></td>
<td>FR8RAIL II WP3: Real-time network management and improved methods for timetable planning</td>
</tr>
<tr>
<td>TPL F20</td>
<td></td>
<td>FR8RAIL II WP5: Freight Automation</td>
</tr>
<tr>
<td>TPL F21</td>
<td></td>
<td>FR8RAIL III WP2: Real-time network management</td>
</tr>
<tr>
<td>TPL F22</td>
<td></td>
<td>FR8RAIL III WP3: Intelligent video gate / Demogate</td>
</tr>
</tbody>
</table>

Freight and logistics

Passenger transport and customer preferences

Capacity analysis and signalling

RESEARCH PROJECTS

TPL F13. Capacity4Rail (C4R)

Researchers: Bo-Lennart Nelldal, Behzad Kordnejad, Hans Boysen
Source of funding: European Union FP7
Duration: 2013–2017

KTH Railway Group participated in the Capacity 4 Rail project which was paving the way towards an affordable, resilient, innovative, and high-capacity European Railway System for 2030/2050. The aim was to specify future railway technologies and systems and will contribute to development of guidance documents identifying further actions to take and future technologies and systems to be developed.

Project coordinator was the International Union of Railways (UIC) and 49 partners from major stakeholders in Industry, Infrastructure managers, railway undertakings, engineering and academic sciences also participated. At KTH divisions of TPL (former TET), REV and SB participated in this project. KTH Railway Group at TPL conducted the following work packages (WP):

- **WP 2.1:** Progress beyond State of the Art on Rail Freight Systems (KTH is project leader).
- **WP 2.2:** Novel rail freight vehicles.
- **WP 2.3:** Co-modal transhipment and interchange/logistics.
- **WP 2.4:** Catalogue of specifications.
- **WP 3.2:** Simulation and models to evaluate enhanced capacity.
TPL F14. Sustainable and energy efficient regional logistics in the Greater Stockholm area

Researcher: Behzad Kordnejad, KTH, in cooperation with the Transport Research Institute (TfK)
Source of funding: Energimyndigheten (Swedish Energy Agency)
Duration: 2015-2016

The study explores possibilities for shifting regional flow of goods in the greater Stockholm and Mälardalen area from road to sea and rail transport, and in that way increase energy efficiency in transport. It maps the extent to which import and export flows to and from ports in the region can shifted to sea or rail transport. Maritime systems as may be appropriate can be based on e.g. motor barges that are currently used in inland shipping in the continental Europe. It can be supplemented with rail shuttles between ports and inland terminals, which are then tied together with regional flows of goods on the railway. Such trimodal regional logistics systems can contribute to a transition to more environmentally friendly transport through improved energy efficiency and reduced emissions.

The project is a continuation of the completed project ‘Regional combi transport - a system study in Mälardalen’.

The project is designed as a pilot study funded by the Swedish Energy Agency and run jointly with Transport Research Institute (TfK) and industry players include Coop Logistics, ICA, Jernhusen, M4, Mälarhamnar, Port of Oxelösund, Ports of Stockholm and Södertälje and Thor Shipping.

Publications

TPL F15. City logistics with pilot study of Tomteboda yard

Researchers: Behzad Kordnejad (Project manager), Bo-Lennart Nelldal
Source of funding: Trafikverket (Swedish Transport Administration)
Duration: 2016-2017

The study explores the possibilities to use a central terminal in Stockholm City for distribution of intermodal containers. This looks into transporting goods in unit loads near the City-Center with electric trains and then distributed by vehicle to the peak direction over a shorter distance. This will enable using electric battery-powered vehicles and to establish a non-polluting transport system in the Stockholm
area. This system will be compared to direct vehicle transport to customers. Two different regional intermodal lines are investigated: A 30 km line from Rosersberg to Tomteboda and a 100 km line from Västerås to Tomteboda. The shorter line means lower energy consumption and pollution but higher costs than direct vehicle transport. The longer line will reduce energy consumption 73% and CO2 emissions 87% and also the transportation cost 12%.

Publications

TPL F16. ARCC WP2: Real-time yard management

Researchers: Behzad Kordnejad
Source of funding: Trafikverket (Swedish Transport Administration) KAJT / EU SaR - IP5
Duration: 2016-2019

KTH contributed to deliverable D2.1 in the ARCC Work package (WP) 2 ‘Real-time Yard Management’ (RTYM), which is a main topic of the Automated Rail Cargo Consortium (ARCC) project. The overall aim of the ARCC project was to conduct an initial phase of rail freight automation research activities designed to boost levels of quality, efficiency, and cost effectiveness in rail freight operations of the European rail sector.

Publications
ARCC. (2017). D2.1 - Description of automation/optimisation requirements and capabilities of decision making process in marshalling yards and terminals. DB Cargo AG.

TPL F17. FR8HUB WP3: Real-time network management and simulation of increasing speed for freight trains

Researchers: Markus Bohlin (principal investigator), Behzad Kordnejad (senior researcher), Johan Högdahl (PhD Student), Niloofar Minbashi (PhD Student), Josef Andersson (Research Engineer)
Source of funding: Trafikverket (Swedish Transport Administration) / EU SaR - IP5
Duration: 2017-2020

This project will develop methods for improved interaction between network management and yard management. The methods will consider interactions between timetable planning on lines and terminals/ yards on a higher level, based on available statistics on arrivals and departures of trains, wagons and intermodal loading units.

The project is focused on capacity analysis and planning and considers both railway timetabling and yard analysis. For short-term railway timetabling, a combined simulation-optimization approach has been demonstrated to reschedule freight trains to a later departure time.

For yard analysis, the study aims to implement a departure delay prediction model from the yards with the application of supervised learning methods. The case study will include Malmö and Hallsberg yards and the line connecting them. The method will also be adapted for using data as produced in FR8HUB WP4 (IVG). In addition, applying input from the ARCC project will be considered.

This work package will deliver a demonstrator showcasing

Example of classification of train data. Illustration: Niloofar Minbashi
The project’s overall objective is to digitize and automate processes in intermodal terminals using the concept of ‘Intelligent video gates’ and thus achieve efficient data collection and processing. This will enable fast and reliable recognition of incoming and outgoing rolling stock and load carriers.

New technologies, such as optical code recognition (OCR), RFID, and sensors enable automatic recognition of rail car numbers and codes on intermodal loading units (containers, semi-trailers, and swap-bodies) and their sequence in the train. Visible damage can also be detected and other possibilities to improve current processes through digitalization and automation are evaluated. Terminals in Sweden and Germany have been analyzed in case studies. Within the framework of the project, functional and technical requirements were investigated, components were selected, technical proof-of-concept was conducted, and an implementation plan was presented, concentrating on prerequisites in Sweden and Germany. Also, a demonstration of the concept was performed at Innotrans 2018 using model trains.

The project is led by DB (DUSS), other European parties are Hitachi, Indra, and the Swedish Transport Administration (Trafikverket). KTH is a linked third party to the Swedish Transport Administration for the project. Other Swedish linked third parties are RISE, Ericsson, TransportForsK (TfK), and LearningWell.

Publications

TPL F19. FR8RAIL II WP3: Real-time network management and improved methods for timetable planning

Researcher: Behzad Kordnejad (Project manager), Jennifer Warg (PhD student), Ingrid Johansson (PhD student), Hans Sipilä, Mohammad Al-Mousa

Source of funding: Trafikverket (Swedish Transport Administration) / EU S2R - IP5

Duration: 2018-2021

Integrating real-time network management and improved methods for timetable planning is essential for efficient rail network management, especially during both minor and major disturbances. This will make passenger and freight rail services more competitive.

Currently, network planning and real-time management are disconnected. This disconnect needs to be eliminated. This concept is based on maintaining a continuously conflict-free traffic plan that is updated in both planning and real-time, and is likely to be consistent with operational constraints for railway undertakings, and for yard and terminal managers.

The work package will deliver a demonstrator for improved short-term planning and daily planning. Requirements will be specified for a demonstrator for testing real time network management concepts.

Publications

Deliverable D 3.1, 2019, Analysis of the gap between daily timetable and operational traffic. Report

TPL F20. FR8RAIL II WP5: Freight Automation

Researcher: Behzad Kordnejad (Project manager)

Source of funding: Swedish Transport Administration / EU S2R - IP5

Duration: 2019-2020

This work package is designed to define and develop concepts and requirements for automating train preparation to further improve efficiency and safety. For example, an automatic brake test, linked to the operator’s database, will significantly shorten train preparation times while increasing safety. Or, an autonomous locomotive start-up, with subsequent heating or cooling of auxiliaries, or automated train data entry will reduce the lead time in the start-up assignment.

Publications

TPL F21. FR8RAIL III WP2: Real-time network management

Researcher: Behzad Kordnejad (Project manager)

Source of funding: Trafikverket (Swedish Transport Administration) / EU S2R - IP5

Duration: 2019-2022

Research in Real-time network management will improve operational processes using improved methods and information support, and human interaction. The research will reduce the gaps between timetable planning and operational traffic, and between yard management and network management.

The project will make a TRL 6 demonstration utilizing the integrated information platform developed in the project. The demonstration will include several important actors of the processes in scope, such as line planner, yard manager and arrival/departure yard planner.

The objectives can be summarized as follows:

- To automate sequential planning and efficient human interaction, overcoming the current lack of synergies when handling and sharing data among infrastructure managers, yard/terminal managers, railway undertakings and maintenance contractors.
- To improve interaction and balancing capacity utilization between infrastructure managers, yard/terminal managers, railway undertakings and maintenance contractors.
- To reduce the gap between timetable planning and operational traffic.
TPL F22. FR8RAIL III WP3: Intelligent video gate / Demogate

Researcher: Behzad Kordnejad (Project manager)
Source of funding: Trafikverket (Swedish Transport Administration) / EU S2R-IP5
Duration: 2019-2022

The overall objective of the project is to digitize and automate the processes at full-scale in freight terminal in Sweden and in a marshalling yard in Germany using ‘Intelligent video gates,’ to achieve efficient data collection and processing. This will enable fast and reliable recognition of incoming and outgoing rolling stock and load carriers. The project is a continuation of the work in FR8HUB WP4 'Intelligent Video gate.'

New technologies such as optical code recognition (OCR), RFID, and sensors enable automatic recognition of wagon numbers and codes on intermodal load carriers (containers, semi-trailers, and swap-bodies) and their sequence in the train. Visible damage can also be detected, and other possibilities introduced to improve current processes through digitalization and automation.

The project is led by KTH as a linked third party to the Swedish Transport Administration (Trafikverket), other Swedish linked third parties are RISE, Ericsson, TransportForsK (TfK) and LearningWell. Other European parties are DB, Hitachi, and Indra.

Fika on Valentine's day 2019: From left to right Abderrahman Ait Ali, Félix Vautard, Niloofar Minbashi, Ingrid Johansson, Oskar Fröidh, Jennifer Warg and Johan Högdahl. Picture: Niloofar Minbashi

PASSENGER TRANSPORT AND CUSTOMER PREFERENCES

TPL P2. High-Speed Rail in Sweden – Supply and demand

Researchers: Bo-Lennart Nelldal and Oskar Fröidh
Source of funding: Various
Duration: Continuous

The fundamental characteristic of high-speed trains on new main lines is they reach a high average speed, often exceeding 200 km/h with top speeds between 250 and 360 km/h, and thus achieving competitively short journey times. When express and fast trains on the conventional lines are replaced by high-speed trains on the new main line, capacity is relieved for expanding freight train and regional train services. Punctuality is also improved by separating slower and faster trains.

KTH Railway Group has participated in several studies and research projects concerning high-speed trains. During 2009 KTH Railway Group participated in the commission on high-speed trains appointed by the Government. In 2010-2012 we participated in a similar assessment for the Norwegian rail administration (Jernbaneverket). In 2012-2015 minor commissions for future high-speed projects including an upgraded connection Oslo–Stockholm have been performed, as well as continuous support in the planning of the Swedish high-speed system. During later years, we have had a continuous dialogue with the New Generation Railway (NGJ) high-speed rail project of Trafikverket. The aspects discussed includes system requirements and technical standards, and not at least the performance of the national demand forecast model.

Publications

The KTH Railway Group in the Division for Transport Planning has continuously built a database of services available and prices for nearly one hundred rail lines in Sweden. This database currently covers the years 1990 to 2019 and is updated annually on assignment. This supply database contains data on travel times, frequency, and prices in relation to various products (such as high-speed service, Intercity (IC) service, regional service) for commercial rail services, tendered service contracts for regional public transport, and national principals.

A report is published annually with analyses of trends and changes to services available, the competitive situation between operators and between rail, bus, and auto, and often including special in-depth study, as with generalized travel cost with respect to various relationships.

TPL P4. Database of supply and prices for railway lines in Sweden

Researchers: Bo-Lennart Nelldal, Josef Andersson and Oskar Fröidh (Project manager)

Sources of funding: Transportstyrelsen (Swedish Transport Agency). Previously also Banverket (Swedish Rail Administration; 1990–2009) and the agency Transport Analysis (2010–2014)

Duration: 1990–2020

A report is published annually with analyses of trends and changes to services available, the competitive situation between operators and between rail, bus, and auto, and often including special in-depth study, as with generalized travel cost with respect to various relationships.

Publications

SJ’s interregional services. Status as of 1 November 2019

Entrant operators’ interregional services after market opening. Status as of 1 November 2019

Legend
- Commercial interregional
- Interregional partly subsidised
- State procured night train services

Legend
- New operators’ services
- New operators, national
- Vy (Norway)
- Öresund trains (procured)

Illustration: Oskar Fröidh
TPL P6. Peripherally located railway stations – effects for train travel and society

Researchers: Oskar Fröidh (Project manager), Josef Andersson, Daniel Jonsson and Marcus Adolphson
Source of funding: Trafikverket (Swedish Transport Administration)
Duration: 2014-2018

For new construction or substantial rebuilding of railways, it may be necessary to consider a new station in the urban fringe (periphery) rather than in a central location. It is unclear what effects the peripherally located stations have had on rail travel, service in relation to travellers and urban development compared with centrally located stations. Clarification of these effects is important for many aspects of future rail corridors and their planning.

14 new or remodelled stations for primarily interregional and medium to longer regional train services with greatly improved train supply since 1990 were selected for the study: From south to north the stations are Malmö Hyllie, Triangeln and Malmö C, Laholm, Flemingsberg, Södertälje south, Läggesta, Strängnäs, Eskilstuna C, Bålsta, Uppsala C, Söderhamn, Umeå Ö and Umeå C. The analysis comprises three main parts: 1) Analysis of departing train travellers’ travel habits and valuations; 2) Morphological study of the changes in the social structure 1993-2013 and the municipal plans; and 3) Model analysis of changes in traffic and accessibility at alternative locations.

In summary, the study suggests that localization of new stations will have an impact on society in terms of urban form, passenger satisfaction, travel habits and means of transport and access to workplaces and services, which affects the attractiveness of the railway system and thus travel demand. Centrally or urban located stations thus appear more attractive and better from a system point of view than peripherally located stations.

However, the reason for localizing stations in peripheral settings involve intended reduction in construction costs and intrusion into built-up environments compared to an urban location. When this becomes relevant, it is important to have good public transport connections and other supportive strategies for exploitation and more. However, the present study adds arguments to value the positive effects of an urban located station higher than today.

We have identified opportunities to further develop the methods for evaluating the effects of station location in several areas. It is also possible to include the analyses in location investigations to improve the decision basis for future station location choices.

Publications

Adolphson, M. and Fröidh, O., 2017. Development of urban structure in proximity to new railway stations. RSA Annual Conference, 4-7 June, Dublin, Ireland

Läggesta station is located periferally with connecting bus services to nearest town. Picture: Oskar Fröidh
TPL P7. Travelling flows on the Swedish rail network

Researchers: Bo-Lennart Nelldal, Josef Andersson and Oskar Fröidh (Project manager)

Sources of funding: Transportstyrelsen (Swedish Transport Agency)

Duration: 2016-2018

The KTH supply database mentioned in project TPL P4 contains time series data of rail services supply. However, rail travel demand is not as well studied due to lack of obligation to report journeys for national statistics. The aim of this project was to describe the demand and implement flows to calibrate a forecast model. A method has been developed that includes the following steps:

- Matrices with interregional and regional rail travel was taken from Trafikverket's forecast system Sampers 2014.
- Data of all departures in one day were taken from Samtrafiken’s database.
- A Register from Trafikverket with the specific composition of trains in one specific day was used to calculate the seating capacity. It has been completed with a vehicle register and product factors which describes the standard of the trains in a customer perspective.
- Supply and train types with comfort factors are input in forecast tool Visum which calculate and make route assignment on the rail network.
- Supply and demand during a day was calibrated to base year 2016 and key figures for traffic systems, products and lines was calculated.

Publications

Long distance and regional rail travel in Sweden.
TPL P8. Uppkomm 1 – Tendered and commercial rail services on the same track

Researchers: Félix Vautard (PhD student), Oskar Fröidh (Project manager), Josef Andersson, Camilla Byström, Chengxi Liu (VTI)

Source of funding: Trafikverket (Swedish Transport Administration)

Duration: 2017-2020

The Uppkomm research project is designed to study the effects of opening markets using tendered and commercial rail service provided on the same track. Competition between public transport services arise on certain track sections in Sweden involving commercially operated versus tendered rail services operated under a contracting governmental authority. The project included studying regional and inter-regional passengers’ assessment of smaller shifts in departure times. The next stage involved using the forecasting tool Visum to analyze effects on demand due to adjustments in scheduling forced by limits to track capacity.

Publications

TPL P9. Uppkomm 2 – Mixed rail market dynamics

Researchers: Félix Vautard (PhD student), Oskar Fröidh (Project manager), Chengxi Liu (VTI), Jan-Eric Nilsson (VTI)

Source of funding: Trafikverket (Swedish Transport Administration)

Duration: 2020-2023

In Uppkomm stage 2, the aim is to analyse the market effects of competition on the tracks on mixed markets, i.e. passenger rail services with procured and commercial supplies on the same route which is wholly or partly interchangeable for travellers.

Therefore, our research questions for the doctoral project are:

1. What are the underlying drivers of rail operators’ behaviours to design their supply in mixed rail markets?
2. How can Public Transport Authorities (PTA) design the procured rail services to maximize the welfare given that competition on the tracks is a prerequisite?
3. How can an infrastructure manager (e.g. Trafikverket) improve the capacity allocation (essentially its timetable planning) on a mixed market to maximize the welfare?

The project will result a doctoral thesis. Uppkomm 2 is further based on the model that were produced in Uppkomm 1 and is expected to generate knowledge to increase the socio-economic benefits (welfare) of passenger traffic on the railways for several parties in the rail sector.
TPL P11. Operating costs for high-speed trains (THHT)

Researchers: Oskar Fröidh (Project manager), Mats Berg
Source of funding: Trafikverket (Swedish Transport Administration)
Duration: 2019-2020

The project determines operating costs for rail service using high-speed trains in greater detail than previously possible in the project Economics of the future passenger train fleet (TPL P10). The ongoing research and development program Shift2Rail (within IP1) generates finding in stages providing a good starting point for assessment of future trends. Information regarding economic trends and current technical developments are collected and analysed. A cost estimation model for passenger services is updated to include new data in the high-speed train portion. This provides an updated proposal for a new type train.

Findings will be used as the basis for updating operating costs for passenger services and for Trafikverket’s socio-economic costing calculations regarding future investment in rail infrastructure.

Publications
Fröidh, O., 2020. The importance of commercial speed and operating costs for planning high-speed train services. Proceedings of 8th Transport Research Arena TRA 2020, April 27-30, 2020, Helsinki, Finland (conference cancelled)

TPL P12. Delays’ impact on demand on train journeys – a time series analysis (DeDe)

Researchers: Per Näsman (Project manager), Bo-Lennart Nelldal, Josef Andersson
Source of funding: Trafikverket (Swedish Transport Administration)/KAJT
Duration: 2020-2021

The project aims to calculate the relationship between delays and demand for train journeys over a longer term. Here, long term is defined as over the time remaining demand effects caused by delays and the minimum period of time in the data is one year.

The project will answer the question of how much travel is affected by delays and thus how it affects the revenues of the operators and the socio-economic costs of travellers and society.

KTH has built up a unique database of train supply incl. prices for 1990-2019, and delays from 2001-2018 on various routes. This can be combined with information on the demand for train journeys.

Share of delayed passenger trains in Sweden 2001-2019. The 2010 and 2011 peaks were due to extremely cold and snowy winters, and 2018 the extremely warm summer.
TPL C3. Development of timetable strategies

Researchers: Jennifer Warg (PhD student), Markus Bohlin (Project manager), Oskar Fröidh, Bo-Lennart Nellå, Lars-Göran Mattssson

Sources of funding: KTH Railway Group 2013-2016; (Various 2016-), Hesselmanska stiftelsen 2021

Duration: 2012-2021

This research project is designed to assess the results of timetable analyses and simulations to determine benefits to travellers and railway operators. Currently, such benefits are rarely considered in capacity analyses. Moreover, capacity characteristics are a minor consideration in socio-economic analyses. In the project, relevant capacity criteria are identified and assessed to establish relationships between the criteria to enable using these for assessment. Primary focus is on comparing various timetable slots and timetable alternatives. Further, a method for pricing commercial train slots in deregulated markets is developed in cooperation with the SAMEFF project. That method will be based on the social-economic costs of consequences resulting from changes to timetables in subsidised traffic. The Swedish western and southern main lines are used for case studies.

Publications

Warg, J., 2013. Economic evaluation of timetable strategies with simulation. 10th World Congress on Railway Research (WCRR) Sydney, Australia.

Timetable in RailSys micro simulation for a double track line including block occupation fields.
Delays and traffic interruptions have become increasingly common in the railway system due to extreme weather as a result of climate change, increased traffic, and overdue maintenance. This report analyses both major traffic interruptions lasting more than 24 hours and major delays of more than one hour in passenger and freight traffic. One conclusion drawn is that long delays in passenger traffic are due to external factors such as overhead line electrification faults, people on the tracks, storms, and disturbance from other trains to a greater extent than in freight traffic. Such causes are difficult for railway companies to influence directly and can only be influenced to a degree by the Swedish Transport Administration. Regarding freight traffic, delays classified as Late from depot or to/from abroad and disturbed by other train are highly significant and in some cases can be considered internal factors over which the railway companies themselves can exert a degree of control. On the other hand, the fact that Late from depot has such great impact is an indication of a need for more flexible timetable planning and operative management of freight traffic. A recommendation is that statistics should differentiate between traffic interruptions of longer than 24 hours, major delays of longer than 1 hour, and minor delays, and show punctuality and cancelled trains as specific items. Studies should be made of travellers’ valuations of the different types of delays that can be used in socio-economic calculations.

Publications

Researchers: Johan Högdahl (PhD student), Markus Bohlin (Project manager), Oskar Fröidh

Sources of funding: Trafikverket (Swedish Transport Administration)/ KAJT

Duration: 2016-2020

The project aims to develop new algorithms and methods to measure robustness, flexibility, and resilience in timetables, then describe and evaluate these, and develop a demonstrator to show the possibilities. In the longer term, the effect goal is to better measure capacity and the relationship between capacity-related parameters such as timetable robustness against interference and infrastructure flexibility to handle changes, utilized capacity, and resulting delays.

Publications

Högdahl, J., Bohlin, M., Fröidh, O., 2017. Combining optimization and simulation to improve railway timetable robustness. In Proc. 7th Int. Conf. On Railway Operations Modelling and Analysis RailLille, Lille, France

Optimization of a timetable with respect to delays and running times, here in one direction only on the Western main line.
TPL C15. KAIN – Capacity in networks

Researchers: Jennifer Warg (PhD student), Ingrid Johansson (PhD student), Markus Bohlin (Project manager)

Sources of funding: Trafikverket (Swedish Transport Administration)/KAJT

Duration: 2017-2019

The project investigated methods developed for capacity analysis in networks aiming for more efficient utilisation of existing infrastructure. The existing UIC 406-based mathematical method for calculating capacity utilization was improved and expanded. The project included a feasibility study on existing methods for calculating capacity utilization and identifying deficiencies in the Swedish Transport Administration’s current method. Focus was development of a new, timetable-independent method for calculating capacity utilization on nodes and in networks. The project collaborated with the S2R project PLASA and PLASA 2, where the macroscopic simulation tool PRISM is being developed. A model description of that tool and an investigation of its potential use in Sweden was part of the KAIN project. In both the capacity utilization model for nodes and the Swedish version of PRISM, timetable and infrastructure data are retrieved from the microscopic simulation tool RailSys.

Collaboration took place with Norman Weik at RWTH Aachen (Germany Research Foundation with research grant 283085490 “Integral capacity and reliability analysis of guided transport systems based on analytical models” and Research Training Group 2236 “UnRAVeL).”

Publications

TPL C16. PLASA

Researchers: Markus Bohlin (Project manager), Jennifer Warg (PhD student), Behzad Kordnejad

Source of funding: Trafikverket (Swedish Transport Administration)/KAJT / EU S2R

Duration: 2017-2018

The Shift2Rail project, PLASA, was conducted by KTH in collaboration with the Swedish Transport Administration and international partners (DB Analytics, HaCon, SNCF and Thales). The project considered future methods for planning and controlling train traffic, so-called smart planning methods. Simulation, optimization and data analysis for timetable planning and prediction of punctuality were in the focus.

Today, microscopic simulation with RailSys is the usual method used in Sweden. The Swedish Transport Administration provides and maintains all of Sweden’s infrastructure and the annual timetable in the system to enable capacity analyses of various kinds. Travel times, delays and capacity utilization can be estimated efficiently. The tool requires a high level of detail which uses complex networks, advanced investigation scenarios or future systems difficult. In addition, expert knowledge is required to use the program properly. To overcome these shortcomings, development of a macro simulation tool named PRISM was initiated in the project. It was tested in a case study on the Swedish southern mainline, as well as on the German railway network.

Publications

TPL C17. PLASA 2 Smart planning and virtual certification

Researchers: Oskar Fröidh (Project manager), Ingrid Johansson (PhD student), Jennifer Warg (PhD student), Hans Sipilä

Source of funding: Trafikverket (Swedish Transport Administration)/ KAJT / EU S2R

Duration: 2018-2020

As PLASA 1, the project is about smart planning. Plasa 2 involves further development of the PRISM model and methodology developed in the first project. The macro-simulation tool PRISM enables faster analyses than the commonly used microscopic tool RailSys. In a case study on the line Hallsberg-Malmö, the tool is used and compared to simulation with RailSys, and to realistic data. While the case studies in PLASA 1 were theoretical with many assumptions, the further developed tool allows for a more realistic analysis. Deutsche Bahn, as developer of the tool, are applying PRISM in a variety of case studies on the German railway network and developing it to include capability to use microscopic data when available, without reducing the advantage of fast simulation. An analysis of the program’s advantages and disadvantages in comparison to RailSys as well as a description and method for use with incomplete data is also included in the project.

The project is under leadership from Deutsche Bahn (DB). Trafikverket is the Swedish partner using KTH and LU based researchers as linked third parties.

Publications

Example of interferences between trains in the PRISM macro simulation model.

TPL C18. ERTMS Long-term development

Researchers: Anders Lindahl (Project manager), Vahid Ranjbar (PhD Student), Oskar Fröidh, Nils Olsson and Olov Lindfliedt

Source of funding: Trafikverket (Swedish Transport Administration) / S2R

Duration: 2019-2021

The project is designed to analyze possible prerequisites for implementation of ERTMS Level 3 (L3) with moving blocks, which are the highest level of the current concept of the future European railway signalling system. This analysis includes technological, organizational, legal, and other factors, but will concentrate on the technological. ERTMS L3 is largely based on current technology, but will be implemented in future.

This makes it desirable for the system to be based on standard solutions using new technology that can support both current and future signalling systems requirements. Backward compatibility with currently used ERTMS, simple and cost-effective migration, with flexibility for modifications to function with future technologies will also be important.
TPL C19. Mathematical methods for greater signalling system safety

Researchers: Anders Lindahl (Project manager), Dimitris Rizopoulos (PhD student), Erik Jenelius, Nils Olsson and Olov Lindfeldt

Source of funding: Trafikverket (Swedish Transport Administration)/ S2R

Duration: 2019-2022

The project is designed to study using mathematical methods for quality assurance of current and future rail traffic in various ways. New mathematical methods must be developed and implemented to maintain current railway operational safety levels even with future development of various traffic concepts.

For example, this can be applied to development of signal boxes for signal systems control to ensure no safety critical conditions arise from using formal methods based on mathematical methods to specify, develop, and verify software. This would be for the purpose of increasing confidence in system reliability and correctness, and to reduce errors. Formal verification is through software tools performing automatic mathematical testing of the system.

This includes for development of future traffic solutions using ‘virtual coupling of trains,’ where trains are not physically coupled but are run in tandem – known as platooning. Working with different distances between two trains, that is their headway (including coupling and uncoupling at speed), the virtually coupled train can be used to help increase flexibility and rail capacity.

ETCS on the Ådal line. Photo: Oskar Fröidh
ISE C18. Fail-Safe Train Positioning

Researchers: Mats Bengtsson (Project manager), Wendi Löffler (PhD student)

Source of funding: Trafikverket (Swedish Transport Administration)/ S2R

Duration: 2019-2022

The project contributes to the work on train positioning within Shift2Rail, where Trafikverket is the Swedish partner in Shift2Rail using KTH based researchers as linked third parties. The goal is to replace physical balises by a combination of odometry, satellite based navigation (GNSS) and other sources, such as inertial measurement units, as well as maps. The train position is obtained by fusing information from different sources and exploiting the known map. Obviously, safety to failures and measurement outliers is a crucial feature. In particular, we are analysing how sensitive the estimated position is to errors in the maps, since obtaining and maintaining accurate maps is costly.

ISE C19. Wireless Communications for Railways

Researchers: Mats Bengtsson (Project manager), Leandro Lopez (PhD student)

Source of funding: Trafikverket (Swedish Transport Administration)/ S2R

Duration: 2019-2022

The project contributes to the work on adaptable communications for railways within Shift2Rail, where Trafikverket is the Swedish partner in Shift2Rail using KTH based researchers as linked third parties. In the project, we focus on understanding the particular aspects of radio propagation in railway environments. One such aspects is the high Doppler frequency and the possibly large spread of different Doppler frequencies between differently reflected multipath reflections of the radio wave, that will cause problems in most communication systems. However, the Doppler spread can also be exploited to improve the resilience to channel variations due to fading.

Researchers: Ehsan Poorhadi (PhD student), Elena Troubitsyna (Assoc. Prof.), György Dán (Project manager)

Source of funding: Trafikverket (Swedish Transport Administration)/ S2R

Duration: 2019-2022

The project contributes to the work on security analysis of railway signalling and control systems within Shift2Rail, and is performed as linked third party through Trafikverket. In the project the focus is on extending formal verification of safety critical networked systems, with a focus on applications in railways, e.g., including interlocking and ETCS, so that the impact of potential vulnerabilities of IT components and subsystems can be included in the safety analysis. The main challenge lies in developing a scalable yet useful abstraction for security vulnerabilities, which allows modelling and analysis in well-established frameworks based on set theory, first order logic and temporal logic.
Divison of soil and rock mechanics – JOB

The division conducts research within soil and rock engineering for railways structures, including foundations, embankments and tunnels and is responsible for several courses in geotechnical engineering and rock mechanics. Research areas include behavior of embankment material, grouting and support of rock tunnels, deep soil mixing, ground vibrations and risk management.

Faculty
Professor Stefan Larsson stelar@kth.se
Associate professor Fredrik Johansson frejoha@kth.se
Adjunct professor Diego Mas Ivars diego@kth.se
Researcher Carl Wersäll cwersall@kth.se
Researcher Almir Draganovic almird@kth.se
Researcher Johan Spross spross@kth.se
Researcher Chunling Shan cshan@kth.se
Affiliated faculty Marie Vestberg Wilde marie.westberg.wilde@afconsult.com

PhD Students:
Editha Ehrmantraut, Jörgen Larsson, Bernardita Lira, Mohammad Mohammadi, Francisco Rios Bayona, Davi Rodrigues Damasceno, Ida Samuelsson, Tafadzwa John Shamu, Suihan Zhang, Ricardo De Frias Lopez, William Bjureland, Alireza Ahmadi

RESEARCH PROJECTS

JOB 1. Compaction of embankments for high-speed railway

Researchers: Carl Wersäll, Stefan Larsson, Nils Rydén
Source of funding: The Swedish Transport Administration (Trafikverket), Better Interaction in Geotechnics (BIG), The Development Fund of the Swedish Construction Industry (SBUF), PEAB AB, Dynapac Compaction Equipment AB.

The project aims to optimize roller compaction of high-speed railway embankments for slab-track with strict settlement requirements. Research methods consist mainly of full-scale tests and laboratory tests. Studied parameters include vibration frequency, lift thickness, material fraction and number of passes. A new compaction technique, called ‘automatic frequency control’, that continuously and automatically adjusts the vibration frequency based on soil conditions has been developed within the project. The technology has been implemented and is available on the market. Other results from the project are being implemented in requirement specifications for high-speed railway construction.

Publications:
JOB 2. Simulation of ballast and embankment fill

Researchers: Denis Jelagin, Ricardo de Frias Lopez, Stefan Larsson, Feng Chen, Erik Olsson, Christoffer With

Source of funding: The Swedish Transport Administration (Trafikverket), Better Interaction in Geotechnics (BIG).

Correct predictions of ballast layer requirements are crucial, as under-dimensioning implies a risk for structural failure and large maintenance costs and over-dimensioning implies unnecessary large costs and environmental impact. The project aims to develop and implement a constitutive model for the ballast layers based on fundamental material properties. Constitutive model established through triaxial testing & DEM modelling will allow incorporating ballast material parameters into ballast layer FE simulations at large length & time-scales. A model allowing for straightforward calibration with full-scale tests & field performance data is aimed at.

Publications:

Erik Olsson, Denis Jelagin, Pascal A. Forquin, 2019, Computational framework for analysis of contact-induced damage in brittle rocks, International Journal of Solids and Structures, 167

JOB 3. Transition zones

Researchers: Carl Wersäll, Alireza Ahmadi

Source of funding: The Swedish Transport Administration (Trafikverket)

Transition zones between embankments and stiff structures, such as bridges and culverts, are prone to settlements and stiffness gradients that cause a significant need for maintenance. This aim of this project is to understand the deformation processes and suggest and verify new transition zone solutions that minimize the need for maintenance. Methods include field instrumentation and numerical simulation.

JOB 4. Evaluation of railway track stiffness by static plate load tests

Researchers: Carl Wersäll, Sadek Baker, William Bjureland

Source of funding: The Swedish Transport Administration (Trafikverket)

This project studies how elastic moduli in simulations of track stiffness for railway embankments with slab track systems should be converted to requirement specifications for static plate load tests.