Wheel profile optimization for the iron ore wagons on Malmbanan

Project introduction 2012-10-24

-Johan Öberg & Peter Hartwig-

Project assigned by

Motivation

RCF issues on iron ore wagon wheels:

driven by e.g.:

- high axle loads
- environmental conditions
- wheel/rail interaction
- vehicle dynamics

affecting e.g.:

- reprofiling costs
- idle wagon costs
- ➤ wheel life
- rail damage
- noise
- substantial economic impact + unpredictable secondary damages

> assignment:

find wheel profile(s) with minimised risk of RCF while keeping other characteristic functionalities in reasonable boundaries

Optimisation process

Input data

Input data

vehicle data

- Fanoo type wagon
- model revised and validated by KTH
- block brake still to be modelled
- track data
 - selection of representative track sections
 - tight curves, transitions, narrow gauge
 - (switches disregarded)
- running parameters
 - velocity profile
 - option A: track-defined operational speed (max. 60 km/h)
 - option B: speed profile from CATO (computer-aided train operation)
 - option C: STEC (simulated train energy consumption) program output developed by KTH and MiW
 - braking regime

Input data: modelling strategy

- ➤ contact:
 - Hertz (as implemented in Gensys[©])
 - fast and conservative
 - use of other contact models will be considered upon first results
- > friction:
 - can vary between 0.2 and 0.7
 - nominal friction will be set to 0.4
- ➢ RCF:
 - shakedown map with fatigue indexes (SI model)
- > wear:
 - T_y as indicator
 - Archard's model for comprehensive analysis
- simulation strategy

Input data: wheel profiles

- evaluation of 586 MiniProf WP4 measurement files (2005-2009)
- follow up on wear development
- wheel tread: 1 mm material loss every 55,000..85,000 km
- comparison basis for subsequent simulation

Input data: wheel profiles

- define a start population for optimisation process
 - reference profile(s), e.g. WP4, S1002
 - measured worn profiles
 - random profiles
- wheel profile generator
 - reverse engineering approach
 - creates wheel profiles from characteristic values

MiW Konsult AB

Input data: rail profiles

- evaluation of measured rail profiles (2011, 2012)
- compare and classify profiles on:
 - original profile type (MB1, UIC60, MB4, MB1asym)
 - shape similarity -> define class tolerances
 - create profile clusters
- map profiles to geographical position on track

Simulation

Simulation

- Gensys[®] multi-body simulation software
- challenge: create a simple and fast simulation environment
 - same simulation boundary conditions for all wheel profile pairs
 - reduce overall track distance to a minimum
 - wheel/rail profile wear update neglected
 - constant friction & velocity
 - simplified block brake model

repeat for every wheel profile pair (wppX)						
wheel profile pair (upp)	new profile	new profile	new wppA	new profile	new profile	new profile
(
rail profile pair (rpp)	rpp1	rpp2	rpp3	rpp4	rpp5	rpp6
track section (ts)	tsI		tsII			tsIII

Evaluation

Evaluation

- select appropriate "fitness" measures
 - RCF
 - wear rate
 - radial steering index
 - Y/Q
 - ...
- decide on ranking of fitness values
- define evaluation procedures
- formulate an overall fitness function
- each simulated profile will be assigned an individual fitness value

Wheel profile reproduction

Wheel profile reproduction

reproduction process based on genetic algorithm features

Optimised wheel profiles

Optimised wheel profiles

- repeat optimisation process until no further substantial changes
- select profile(s) with best overall fitness indexes
- compare candidates with WP4 profile along extended track section
 - inclusion of wheel profile wear update
 - consider different friction conditions
 - apply speed profile and refined brake model
- finally choose most promising profile(s) for testing

Field testing

Field testing

- selected profile(s) will be applied to limited number of wheels
- in-service shape monitoring with local track instrumentation
- random visual checks
- profile review and revision

Thank You !

Peter Hartwig MiW Konsult AB Fiskargatan 8 SE-116 20 Stockholm Mobile: +46 (0)707 714 417 peter.hartwig@miw.se

